O25b:H4 sequence type 131 (ST131), which is resistant to fluoroquinolones and which is a producer of CTX-M-15, is globally one of the major extraintestinal pathogenic (ExPEC) lineages. Phylogenetic analyses showed that multidrug-resistant ST131 strains belong to clade C, which recently emerged from clade B by stepwise evolution. It has been hypothesized that features other than multidrug resistance could contribute to this dissemination since other major global ExPEC lineages (ST73 and ST95) are mostly antibiotic susceptible.
View Article and Find Full Text PDFMutations in hydroxymethylbilane synthase (HMBS) cause acute intermittent porphyria (AIP), an autosomal dominant disease where typically only one HMBS allele is mutated. In AIP, the accumulation of porphyrin precursors triggers life-threatening neurovisceral attacks and at long-term, entails an increased risk of hepatocellular carcinoma, kidney failure, and hypertension. Today, the only cure is liver transplantation, and a need for effective mechanism-based therapies, such as pharmacological chaperones, is prevailing.
View Article and Find Full Text PDFObjective: Sustained inflammation originating from macrophages is a driving force of fibrosis progression and resolution. Monoacylglycerol lipase (MAGL) is the rate-limiting enzyme in the degradation of monoacylglycerols. It is a proinflammatory enzyme that metabolises 2-arachidonoylglycerol, an endocannabinoid receptor ligand, into arachidonic acid.
View Article and Find Full Text PDFInflammatory bowel disease (IBD) is characterized by severe and recurrent inflammation of the gastrointestinal tract, associated with altered patterns of cytokine synthesis, excessive reactive oxygen species (ROS) production, and high levels of the innate immune protein, lipocalin-2 (LCN-2), in the mucosa. The major source of ROS in intestinal epithelial cells is the NADPH oxidase NOX1, which consists of the transmembrane proteins, NOX1 and p22, and the cytosolic proteins, NOXO1, NOXA1, and Rac1. Here, we investigated whether NOX1 activation and ROS production induced by key inflammatory cytokines in IBD causally affects LCN-2 production in colonic epithelial cells.
View Article and Find Full Text PDFLiver fibrosis is the common response to chronic liver injury, and leads to cirrhosis and its complications. Persistent inflammation is a driving force of liver fibrosis progression. Mucosal-associated invariant T (MAIT) cells are non-conventional T cells that display altered functions during chronic inflammatory diseases.
View Article and Find Full Text PDFObjective: Cirrhosis downregulates phagocyte oxidant production via their antibacterial superoxide-generating system, NADPH oxidase (NOX2) and increases patients' susceptibility to infection and mortality rate. To explore novel biochemical parameters that explain susceptibility to infections, we investigated the expression of NOX2 and partners in neutrophils of patients with severe alcoholic cirrhosis and have provided a novel approach to restore superoxide production capacity in patients' neutrophils and blood.
Design: Neutrophils were isolated from patients with decompensated alcoholic cirrhosis.
Hemolysis occurring in hematologic diseases is often associated with an iron loading anemia. This iron overload is the result of a massive outflow of hemoglobin into the bloodstream, but the mechanism of hemoglobin handling has not been fully elucidated. Here, in a congenital erythropoietic porphyria mouse model, we evaluate the impact of hemolysis and regenerative anemia on hepcidin synthesis and iron metabolism.
View Article and Find Full Text PDFThe iron-regulatory peptide hepcidin exhibits antimicrobial activity. Having previously shown hepcidin expression in the kidney, we addressed its role in urinary tract infection (UTI), which remains largely unknown. Experimental UTI was induced in wild-type (WT) and hepcidin-knockout (Hepc-/-) mice using the uropathogenic Escherichia coli CFT073 strain.
View Article and Find Full Text PDFBackground & Aims: To determine the pathogenesis of liver nodules, and lesions similar to obliterative portal venopathy, observed after portosystemic shunts or portal vein thrombosis in humans.
Methods: We conducted an experimental study comparing portacaval shunt (PCS), total portal vein ligation (PVL), and sham (S) operated rats. Each group were either sacrificed at 6 weeks (early) or 6 months (late).
Whereas the remodeling of intestinal mucosa after bariatric surgeries has been the matter of numerous studies to our knowledge, very few reported on the remodeling of the residual gastric mucosa. In this study, we analyzed remodeling of gastric mucosa after Roux-en-Y gastric bypass (RYGB) and vertical sleeve gastrectomy (VSG) in rats. Diet-induced obese rats were subjected to RYGB, VSG or sham surgical procedures.
View Article and Find Full Text PDFDisorders of iron metabolism are among the most common acquired and constitutive diseases. Hemochromatosis has a solid genetic basis and in Northern European populations it is usually associated with homozygosity for the C282Y mutation in the HFE protein. However, the penetrance of this mutation is incomplete and the clinical presentation is highly variable.
View Article and Find Full Text PDFHepcidin, the key regulatory hormone of iron homeostasis, and iron carriers such as transferrin receptor1 (TFR1), divalent metal transporter1 (DMT1), and ferroportin (FPN) are expressed in kidney. Whether hepcidin plays an intrinsic role in the regulation of renal iron transport is unknown. Here, we analyzed the renal handling of iron in hemochromatosis Hepc(-/-) and Hjv(-/-) mouse models, as well as in phenylhydrazine (PHZ)-treated mice.
View Article and Find Full Text PDFBackground & Aims: Lipopolysaccharide (LPS)-expressing bacteria cause severe inflammation in cirrhotic patients. The global gene response to LPS is unknown in cirrhotic immune cells.
Methods: Gene-expression profiling using Affymetrix Human Exon Array analyzed the expression of 14,851 genes in LPS-stimulated peripheral blood mononuclear cells (PBMCs) from 4 patients with cirrhosis and 4 healthy subjects.
Objective: Anemia is common in critically ill patients, due to inflammation and blood loss. Anemia can be associated with iron deficiency and low serum hepcidin levels. However, iron administration in this setting remains controversial because of its potential toxicity, including oxidative stress induction and sepsis facilitation.
View Article and Find Full Text PDFBackground & Aims: Circulating membrane-shed microparticles (MPs) participate in regulation of vascular tone. We investigated the cellular origins of MPs in plasma from patients with cirrhosis and assessed the contribution of MPs to arterial vasodilation, a mechanism that contributes to portal hypertension.
Methods: We analyzed MPs from blood samples of 91 patients with cirrhosis and 30 healthy individuals (controls) using flow cytometry; their effects on the vascular response to vasoconstrictors were examined in vitro and in vivo.
A frequent mechanism for drug-induced liver injury (DILI) is the formation of reactive metabolites that trigger hepatitis through direct toxicity or immune reactions. Both events cause mitochondrial membrane disruption. Genetic or acquired factors predispose to metabolite-mediated hepatitis by increasing the formation of the reactive metabolite, decreasing its detoxification, or by the presence of critical human leukocyte antigen molecule(s).
View Article and Find Full Text PDFHepatic energy depletion has been described in severe sepsis, and lipopolysaccharide (LPS) has been shown to cause mitochondrial DNA (mtDNA) damage. To clarify the mechanisms of LPS-induced mtDNA damage and mitochondrial alterations, we treated wild-type (WT) or transgenic manganese superoxide dismutase-overerexpressing (MnSOD(+++)) mice with a single dose of LPS (5 mg/kg). In WT mice, LPS increased mitochondrial reactive oxygen species formation, hepatic inducible nitric oxide synthase (NOS) mRNA and protein, tumor necrosis factor-alpha, interleukin-1 beta, and high-mobility group protein B1 concentrations.
View Article and Find Full Text PDFBackground & Aims: Chronic, progressive hepatobiliary disease is the most severe complication of erythropoietic protoporphyria (EPP) and can require liver transplantation, although the mechanisms that lead to liver failure are unknown. We characterized protoporphyrin-IX (PPIX)-linked hepatobiliary disease in BALB/c and C57BL/6 (Fechm1Pas) mice with mutations in ferrochelatase as models for EPP.
Methods: Fechm1Pas and wild-type (control) mice were studied at 12-14 weeks of age.
Transient environmental influences, such as perinatal nutritional stress, may induce deleterious metabolic symptoms that last for the entire life of individuals, implying that epigenetic modifications play an important role in this process. We have investigated, in mice, the consequences of maternal undernutrition during gestation and lactation on DNA methylation and expression of the leptin gene, which plays a major regulatory role in coordinating nutritional state with many aspects of mammalian biology. We show that animals born to mothers fed a low-protein-diet (F1-LPD group) have a lower body weight/adiposity and exhibit a higher food intake than animals born to mothers fed a control diet (F1-CD group).
View Article and Find Full Text PDFBackground & Aims: In decompensated cirrhosis, the early innate immune response to the Toll-like receptor 4 (TLR4) agonist, lipopolysaccharides (LPS), is characterized by a hyper-production of pro-inflammatory cytokines and hypo-production of the anti-inflammatory cytokine IL-10. In LPS-stimulated non-cirrhotic immune cells, the constitutively active glycogen synthase kinase (GSK) 3 favors pro- vs. anti-inflammatory cytokines, by acting on gene induction.
View Article and Find Full Text PDFBackgrounds & Aims: The mechanism by which hepcidin regulates iron export from macrophages has been well established and is believed to involve degradation of ferroportin. However, in the small intestine, hepcidin's mechanisms of action are not known. We studied human polarized intestinal (Caco-2/TC7) cells and mouse duodenal segments, ex vivo, to investigate the molecular mechanisms by which hepcidin down-regulates intestinal transepithelial iron transport.
View Article and Find Full Text PDFMouse bone marrow erythropoiesis is homeostatic, whereas after acute anemia, bone morphogenetic protein 4 (BMP4)-dependent stress erythropoiesis develops in the spleen. The aim of this work was to compare spleen stress erythropoiesis and bone marrow erythropoiesis in a mouse model of zymosan-induced generalized inflammation, which induces long-lasting anemia and to evaluate the ability of erythropoietin (Epo) injections to correct anemia in this setting. The effects of zymosan and/or Epo injections on erythroid precursor maturation and apoptosis, serum interferon-γ levels, hematologic parameters, and spleen BMP4 expression were analyzed, as well as the effect of zymosan on red blood cell half-life.
View Article and Find Full Text PDFAlcohol consumption increases reactive oxygen species (ROS) formation, which can damage mitochondrial DNA (mtDNA) and alter mitochondrial function. To test whether manganese superoxide dismutase (MnSOD) modulates acute alcohol-induced mitochondrial alterations, transgenic MnSOD-overexpressing (MnSOD(+++)) mice, heterozygous knockout (MnSOD(+/-)) mice, and wild-type (WT) littermates were sacrificed 2 or 24 h after intragastric ethanol administration (5 g/kg). Alcohol administration further increased MnSOD activity in MnSOD(+++) mice, but further decreased it in MnSOD(+/-) mice.
View Article and Find Full Text PDFBackground And Aims: The small intestine is the major site of absorption of dietary sugars. The rate at which they enter and exit the intestine has a major effect on blood glucose homeostasis. In this study, we determine the effects of luminal leptin on activity/expression of GLUT2 and GLUT5 transporters in response to sugars intake and analyse their physiological consequences.
View Article and Find Full Text PDFBackground: Neutrophils play a major role in inflammation by releasing large amounts of ROS produced by NADPH-oxidase and myeloperoxidase (MPO). The proinflammatory cytokine TNFalpha primes ROS production through phosphorylation of the NADPH-oxidase subunit p47phox on Ser345. Conventional anti-inflammatory therapies remain partially successful and may have side effects.
View Article and Find Full Text PDF