Anion Exchange Membranes (AEMs) are promising materials for electrochemical devices, such as fuel cells and electrolyzers. However, the main drawback of AEMs is their low durability in alkaline operating conditions. A possible solution is the use of composite ionomers containing inorganic fillers stable in a basic environment.
View Article and Find Full Text PDFHydrothermal carbonization (HTC) serves as a sustainable method to transform pine needle waste into nitrogen-doped (N-doped) hydrochars. The primary focus is on evaluating these hydrochars as catalytic electrodes for the oxygen reduction reaction (ORR) and carbon dioxide reduction reaction (CORR), which are pivotal processes with significant environmental implications. Hydrochars were synthesized by varying the parameters such as nitrogen loading, temperature, and residence time.
View Article and Find Full Text PDFThe combination of ion exchange membranes with carbon quantum dots (CQDs) is a promising field that could lead to significant advances in water treatment. Composite membranes formed by sulfonated poly(ether ether ketone) (SPEEK) with embedded CQDs were used for the detection and removal of heavy metal ions, such as lead and cadmium, from water. SPEEK is responsible for the capture of heavy metals based on the cation exchange mechanism, while CQDs detect their contamination by exhibiting changes in fluorescence.
View Article and Find Full Text PDFThe protection of zinc anodes in zinc-air batteries (ZABs) is an efficient way to reduce corrosion and Zn dendrite formation and improve cyclability and battery efficiency. Anion-conducting poly(N-vinylbenzyl N,N,N-trimethylammonium)chloride (PVBTMA) thin films were electrodeposited directly on zinc metal using cyclic voltammetry. This deposition process presents a combination of advantages, including selective anion transport in PVBTMA reducing zinc crossover, high interface quality by electrodeposition improving the corrosion protection of zinc and high ionomer stiffness opposing zinc dendrite perforation.
View Article and Find Full Text PDFThe hydrolytic stability of ionomer membranes is a matter of concern for the long-term durability of energy storage and conversion devices. Various reinforcement strategies exist for the improvement of the performances of the overall membrane. We propose in this article the stabilization of membranes based on aromatic ion conducting polymers (SPEEK and SPPSU) by the introduction of an electrospun mat of inexpensive PPSU polymer.
View Article and Find Full Text PDFComposite electrocatalytic electrodes made from B-N co-doped carbon quantum dots (CQD) and various anion exchange ionomers (AEI) are studied for the oxygen reduction reaction (ORR) in alkaline solutions. The quantity and positions of dopants in CQD, prepared by hydrothermal synthesis, are analyzed by various spectroscopies, including B NMR spectroscopy that evidenced boronic acid at edge sites. The AEI are synthesized with various backbones, including more hydrophilic polysulfone, hydrophobic poly(alkylene biphenyl), and poly(2,6-dimethyl-1,4-phenylene oxide) with intermediate hydrophilicity; the functional groups are trimethylammonium moieties grafted on long (LC) or short (SC) side chains.
View Article and Find Full Text PDFThis short review summarizes the improvements on biological fuel cells (BioFCs) with or without ionomer separation membrane. After a general introduction about the main challenges of modern energy management, BioFCs are presented including microbial fuel cells (MFCs) and enzymatic fuel cells (EFCs). The benefits of BioFCs include the capability to derive energy from waste-water and organic matter, the possibility to use bacteria or enzymes to replace expensive catalysts such as platinum, the high selectivity of the electrode reactions that allow working with less complicated systems, without the need for high purification, and the lower environmental impact.
View Article and Find Full Text PDFIn this work, we studied the combination of nitrogen-doped carbon quantum dots (N-CQD), a hydroxide-ion conducting ionomer based on polysulfone (PSU) and polyaniline (PANI), to explore the complementary properties of these materials in high-performance nanostructured electrodes for the oxygen reduction reaction (ORR) in alkaline solution. N-CQD were made by hydrothermal synthesis from glucosamine hydrochloride (GAH) or glucosamine hydrochloride and N-Octylamine (GAH-Oct), and PSU were quaternized with trimethylamine (PSU-TMA). The nanocomposite electrodes were prepared on carbon paper by drop-casting.
View Article and Find Full Text PDFIn this work we report the synthesis of the new ionomer poly(alkylene biphenyl butyltrimethyl ammonium) (ABBA) with a backbone devoid of alkaline-labile C-O-C bonds and with quaternary ammonium groups grafted on long side chains. The ionomer was achieved by metalation reaction with -butyllithium of 2-bromobiphenyl, followed by the introduction of the long chain with 1,4-dibromobutane. The reaction steps were followed by H-NMR spectroscopy showing the characteristic signals of the Br-butyl chain and indicating the complete functionalization of the biphenyl moiety.
View Article and Find Full Text PDFIn this work we report the synthesis of poly(vinylbenzylchloride-co-hexene) copolymer grafted with N,N-dimethylhexylammonium groups to study the effect of an aliphatic backbone without ether linkage on the ionomer properties. The copolymerization was achieved by the Ziegler-Natta method, employing the complex ZrCl (THF) as a catalyst. A certain degree of crosslinking with N,N,N',N'-tetramethylethylenediamine (TEMED) was introduced with the aim of avoiding excessive swelling in water.
View Article and Find Full Text PDFHydroxide exchange membrane fuel cells (AEMFC) are clean energy conversion devices that are an attractive alternative to the more common proton exchange membrane fuel cells (PEMFCs), because they present, among others, the advantage of not using noble metals like platinum as catalysts for the oxygen reduction reaction. The interest in this technology has increased exponentially over the recent years. Unfortunately, the low durability of anion exchange membranes (AEM) in basic conditions limits their use on a large scale.
View Article and Find Full Text PDFThis short review summarizes the literature on composite anion exchange membranes (AEM) containing an organo-silica network formed by sol-gel chemistry. The article covers AEM for diffusion dialysis (DD), for electrochemical energy technologies including fuel cells and redox flow batteries, and for electrodialysis. By applying a vast variety of organically modified silica compounds (ORMOSIL), many composite AEM reported in the last 15 years are based on poly (vinylalcohol) (PVA) or poly (2,6-dimethyl-1,4-phenylene oxide) (PPO) used as polymer matrix.
View Article and Find Full Text PDFNanocomposite anion exchange membranes were synthesized based on poly(sulfone trimethylammonium) chloride. A hybrid semi-interpenetrating silica network containing a large amount of quaternary ammonium groups was prepared by two sol-gel routes, in situ with a single precursor, -trimethoxysilylpropyl-,,-trimethylammonium chloride (TMSP), or ex situ mixing two precursors, TMSP and 3-(2-aminoethylamino)propyldimethoxy-methylsilane (AEAPS). The properties of these hybrid composites and their degradation after immersion in 1 M KOH at 60 °C were studied.
View Article and Find Full Text PDFProton-conducting ionomers are widespread materials for application in electrochemical energy storage devices. However, their properties depend strongly on operating conditions. In bio-fuel cells with a separator membrane, the swelling behavior as well as the conductivity need to be optimized with regard to the use of buffer solutions for the stability of the enzyme catalyst.
View Article and Find Full Text PDFWe investigated the possibility to increase the working temperature and endurance of proton exchange membranes for fuel cells and water electrolyzers by thermal annealing of short side chain perfluorosulfonic acid (SSC-PFSA) Aquivion membranes. The Ionomer n Analysis (INCA method), based on n/T plots where n is a counter elastic force index, was applied to SSC-PFSA in order to evaluate ionomer thermo-mechanical properties and to probe the increase of crystallinity during the annealing procedure. The enhanced thermal and mechanical stability of extruded Aquivion 870 (equivalent weight, EW = 870 g·mol) was related to an increase of long-range order.
View Article and Find Full Text PDFWe synthesized anion exchange polymers by a reaction of chloromethylated poly(2,6-dimethyl-1,4-phenylene)oxide (PPO) with strongly basic 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD).
View Article and Find Full Text PDFA tailor-made annealing procedure was developed for Nafion in order to avoid a critical degradation of the mechanical properties associated with a decrease of the ionic conductivity. The formation of layered morphologies, prevalently oriented in the direction parallel to the membrane surface, is responsible of the decay in fuel cell operation conditions. Nafion membranes are annealed at 140 °C over 7 days in the presence of dimethylsulfoxide (DMSO) as a proton-acceptor solvent.
View Article and Find Full Text PDFThe cathodic deposition of poly(styrene sulfonate) on nanoarchitectured TiO electrodes is explored by cyclic voltammetry and potentiostatic and galvanostatic experiments, showing a diffusion-controlled deposition described by Cottrell's law. The structure and composition of the polymer is evidenced by various spectroscopic techniques, including nuclear magnetic resonance, Fourier transform infrared, and X-ray photoelectron spectroscopy, and its morphology is studied by scanning electron microscopy. The average chain length can be estimated from the NMR spectra.
View Article and Find Full Text PDFWe report the electrochemical performance of porous NASICON-type Li3Fe2(PO4)3 thin films to be used as a cathode for Li-ion microbatteries. Crystalline porous NASICON-type Li3Fe2(PO4)3 layers were obtained by radio frequency sputtering with an annealing treatment. The thin films were characterized by XRD, SEM, and electrochemical techniques.
View Article and Find Full Text PDFIon-exchange membranes based on sulfonated and sulfaminated poly(ether ether ketone) were prepared by a modified sulfamination route. In a first step, poly(ether ether ketone) was sulfonated. The sulfonic acid groups were then transformed into chlorosulfonic moieties by reaction with thionyl chloride.
View Article and Find Full Text PDFWe describe the three-step synthesis of a new polymeric fluoride ion conductor based on the fully aromatic polymer polysulfone (PSU). In the first step, PSU is chloromethylated (CM-PSU) using reagents (i.e.
View Article and Find Full Text PDFBeilstein J Nanotechnol
March 2015
The synthesis of a conformal poly(3,4-ethylenedioxythiophene) (PEDOT) layer on Si nanowires was demonstrated using a pulsed electrodeposition technique. N-type Si nanowire (SiNWs) arrays were synthesized using an electroless metal-assisted chemical etching technique. The dependence of the SiNW reflection on the concentration of the AgNO3 solution was identified.
View Article and Find Full Text PDFThis work reports the conformal coating of poly(poly(ethylene glycol) methyl ether methacrylate) (P(MePEGMA)) polymer electrolyte on highly organized titania nanotubes (TiO2nts) fabricated by electrochemical anodization of Ti foil. The conformal coating was achieved by electropolymerization using cyclic voltammetry technique. The characterization of the polymer electrolyte by proton nuclear magnetic resonance ((1)H NMR) and size-exclusion chromatography (SEC) shows the formation of short polymer chains, mainly trimers.
View Article and Find Full Text PDFThe miniaturization of power sources aimed at integration into micro- and nano-electronic devices is a big challenge. To ensure the future development of fully autonomous on-board systems, electrodes based on self-supported 3D nanostructured metal oxides have become increasingly important, and their impact is particularly significant when considering the miniaturization of energy storage systems. This review describes recent advances in the development of self-supported 3D nanostructured metal oxides as electrodes for innovative power sources, particularly Li-ion batteries and electrochemical supercapacitors.
View Article and Find Full Text PDFHighly-ordered Fe-doped TiO(2) nanotubes (TiO(2)nts) were fabricated by anodization of co-sputtered Ti-Fe thin films in a glycerol electrolyte containing NH(4)F. The as-sputtered Ti-Fe thin films correspond to a solid solution of Ti and Fe according to X-ray diffraction. The Fe-doped TiO(2)nts were studied in terms of composition, morphology and structure.
View Article and Find Full Text PDF