Rhizosphere-associated are known plant growth promoting (PGP) and mycorrhizal helper bacteria (MHB) of many plants and ectomycorrhizal fungi. We investigated the spatial and temporal dynamics of colonization of mycorrhizal and non-mycorrhizal Aspen seedlings roots by the strains SBW25, WH6, Pf0-1, and the strain Pf-5. Seedlings were grown in laboratory vertical plates systems, inoculated with a fluorescently labeled strain, and root colonization was monitored over a period of 5 weeks.
View Article and Find Full Text PDFDiverse communities of bacteria colonize plant roots and the rhizosphere. Many of these rhizobacteria are symbionts and provide plant growth promotion (PGP) services, protecting the plant from biotic and abiotic stresses and increasing plant productivity by providing access to nutrients that would otherwise be unavailable to roots. In return, these symbiotic bacteria receive photosynthetically-derived carbon (C), in the form of sugars and organic acids, from plant root exudates.
View Article and Find Full Text PDFSulfur is an essential element in plant rhizospheres and microbial activity plays a key role in increasing the biological availability of sulfur in soil environments. To better understand the mechanisms facilitating the exchange of sulfur-containing molecules in soil, we profiled the binding specificities of eight previously uncharacterized ABC transporter solute-binding proteins from plant-associated Pseudomonads. A high-throughput screening procedure indicated eighteen significant organosulfur binding ligands, with at least one high-quality screening hit for each protein target.
View Article and Find Full Text PDF