Publications by authors named "Philippe Grangier"

We argue that a clear view of quantum mechanics is obtained by considering that the unicity of the macroscopic world is a fundamental postulate of physics, rather than an issue that must be mathematically justified or demonstrated. This postulate allows for a framework in which quantum mechanics can be constructed in a complete mathematically consistent way. This is made possible by using general operator algebras to extend the mathematical description of the physical world toward macroscopic systems.

View Article and Find Full Text PDF

In a previous article we presented an argument to obtain (or rather infer) Born's rule, based on a simple set of axioms named "Contexts, Systems and Modalities" (CSM). In this approach, there is no "emergence", but the structure of quantum mechanics can be attributed to an interplay between the quantized number of modalities that is accessible to a quantum system and the continuum of contexts that are required to define these modalities. The strong link of this derivation with Gleason's theorem was emphasized, with the argument that CSM provides a physical justification for Gleason's hypotheses.

View Article and Find Full Text PDF

It is known that "quantum non locality", leading to the violation of Bell's inequality and more generally of classical local realism, can be attributed to the conjunction of two properties, which we call here elementary locality and predictive completeness. Taking this point of view, we show again that quantum mechanics violates predictive completeness, allowing the making of contextual inferences, which can, in turn, explain why quantum non locality does not contradict relativistic causality. An important question remains: if the usual quantum state ψ is predictively incomplete, how do we complete it? We give here a set of new arguments to show that ψ should be completed indeed, not by looking for any "hidden variables", but rather by specifying the measurement context, which is required to define actual probabilities over a set of mutually exclusive physical events.

View Article and Find Full Text PDF

We develop the point of view where quantum mechanics results from the interplay between the quantized number of 'modalities' accessible to a quantum system, and the continuum of 'contexts' that are required to define these modalities. We point out the specific roles of 'extracontextuality' and 'extravalence' of modalities, and relate them to the Kochen-Specker and Gleason theorems.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'.

View Article and Find Full Text PDF

We present a heuristic derivation of Born's rule and unitary transforms in Quantum Mechanics, from a simple set of axioms built upon a physical phenomenology of quantization. This approach naturally leads to the usual quantum formalism, within a new realistic conceptual framework that is discussed in details. Physically, the structure of Quantum Mechanics appears as a result of the interplay between the quantized number of "modalities" accessible to a quantum system, and the continuum of "contexts" that are required to define these modalities.

View Article and Find Full Text PDF

Highly entangled quantum states, shared by remote parties, are vital for quantum communications and metrology. Particularly promising are the N00N states-entangled N-photon wavepackets delocalized between two different locations-which outperform coherent states in measurement sensitivity. However, these states are notoriously vulnerable to losses, making them difficult to both share them between remote locations and recombine in order to exploit interference effects.

View Article and Find Full Text PDF

We experimentally demonstrate that a nonclassical state prepared in an atomic memory can be efficiently transferred to a single mode of free-propagating light. By retrieving on demand a single excitation from a cold atomic gas, we realize an efficient source of single photons prepared in a pure, fully controlled quantum state. We characterize this source using two detection methods, one based on photon-counting analysis and the second using homodyne tomography to reconstruct the density matrix and Wigner function of the state.

View Article and Find Full Text PDF

We observe and measure dispersive optical nonlinearities in an ensemble of cold Rydberg atoms placed inside an optical cavity. The experimental results are in agreement with a simple model where the optical nonlinearities are due to the progressive appearance of a Rydberg blockaded volume within the medium. The measurements allow a direct estimation of the "blockaded fraction" of atoms within the atomic ensemble.

View Article and Find Full Text PDF

We address the experimental estimation of Gaussian quantum discord for a two-mode squeezed thermal state, and demonstrate a measurement scheme based on a pair of homodyne detectors assisted by Bayesian analysis, which provides nearly optimal estimation for small value of discord. In addition, though homodyne detection is not optimal for Gaussian discord, the noise ratio to the ultimate quantum limit, as dictated by the quantum Cramer-Rao bound, is limited to about 10 dB.

View Article and Find Full Text PDF

We report on the design and performance of a point-to-point classical symmetric encryption link with fast key renewal provided by a Continuous Variable Quantum Key Distribution (CVQKD) system. Our system was operational and able to encrypt point-to-point communications during more than six months, from the end of July 2010 until the beginning of February 2011. This field test was the first demonstration of the reliability of a CVQKD system over a long period of time in a server room environment.

View Article and Find Full Text PDF

We present experimental studies on the generation of pulsed and continuous-wave squeezed vacuum via nonlinear rotation of the polarization ellipse in a (87)Rb vapor. Squeezing is observed for a wide range of input powers and pump detunings on the D1 line, while only excess noise is present on the D2 line. The maximum continuous-wave squeezing observed is -1.

View Article and Find Full Text PDF

Quantum mechanics imposes that any amplifier that works independently on the phase of the input signal has to introduce some excess noise. The impossibility of such a noiseless amplifier is rooted in the unitarity and linearity of quantum evolution. A possible way to circumvent this limitation is to interrupt such evolution via a measurement, providing a random outcome able to herald a successful-and noiseless-amplification event.

View Article and Find Full Text PDF

We present a continuous-variable quantum key distribution protocol combining a discrete modulation and reverse reconciliation. This protocol is proven unconditionally secure and allows the distribution of secret keys over long distances, thanks to a reverse reconciliation scheme efficient at very low signal-to-noise ratio.

View Article and Find Full Text PDF

We report an experimental test of quantum complementarity with single-photon pulses sent into a Mach-Zehnder interferometer with an output beam splitter of adjustable reflection coefficient R. In addition, the experiment is realized in Wheeler's delayed-choice regime. Each randomly set value of R allows us to observe interference with visibility V and to obtain incomplete which-path information characterized by the distinguishability parameter D.

View Article and Find Full Text PDF

Schrödinger's cat is a Gedankenexperiment in quantum physics, in which an atomic decay triggers the death of the cat. Because quantum physics allow atoms to remain in superpositions of states, the classical cat would then be simultaneously dead and alive. By analogy, a 'cat' state of freely propagating light can be defined as a quantum superposition of well separated quasi-classical states-it is a classical light wave that simultaneously possesses two opposite phases.

View Article and Find Full Text PDF

We demonstrate high gain amplification of 160-femtosecond pulses in a compact double-pass cryogenic Ti:sapphire amplifier. The setup involves a negative GVD mirrors recompression stage, and operates with a repetition rate between 0.2 and 4 MHz with a continuous pump laser.

View Article and Find Full Text PDF

An intercept-resend attack on a continuous-variable quantum-key-distribution protocol is investigated experimentally. By varying the interception fraction, one can implement a family of attacks where the eavesdropper totally controls the channel parameters. In general, such attacks add excess noise in the channel, and may also result in non-Gaussian output distributions.

View Article and Find Full Text PDF

We experimentally demonstrate that the entanglement between Gaussian entangled states can be increased by non-Gaussian operations. Coherent subtraction of single photons from Gaussian quadrature-entangled light pulses, created by a nondegenerate parametric amplifier, produces delocalized states with negative Wigner functions and complex structures more entangled than the initial states in terms of negativity. The experimental results are in very good agreement with the theoretical predictions.

View Article and Find Full Text PDF

Wave-particle duality is strikingly illustrated by Wheeler's delayed-choice gedanken experiment, where the configuration of a two-path interferometer is chosen after a single-photon pulse has entered it: Either the interferometer is closed (that is, the two paths are recombined) and the interference is observed, or the interferometer remains open and the path followed by the photon is measured. We report an almost ideal realization of that gedanken experiment with single photons allowing unambiguous which-way measurements. The choice between open and closed configurations, made by a quantum random number generator, is relativistically separated from the entry of the photon into the interferometer.

View Article and Find Full Text PDF

We present a continuous-variable experimental analysis of a two-photon Fock state of free-propagating light. This state is obtained from a pulsed nondegenerate parametric amplifier, which produces two intensity-correlated twin beams. Counting two photons in one beam projects the other beam in the desired two-photon Fock state, which is analyzed by using a pulsed homodyne detection.

View Article and Find Full Text PDF

We present a detailed experimental analysis of a free-propagating light pulse prepared in a "Schrödinger kitten" state, which is defined as a quantum superposition of "classical" coherent states with small amplitudes. This kitten state is generated by subtracting one photon from a squeezed vacuum beam, and it clearly presents a negative Wigner function. The predicted influence of the experimental parameters is in excellent agreement with the experimental results.

View Article and Find Full Text PDF

We present a detailed study of photophysical properties of single color centers in natural diamond samples emitting in the near infrared under optical excitation. Photoluminescence of these single emitters has several striking features, including narrow-band (FWHM 2 nm) fully polarized emission around 780 nm, a short excited-state lifetime of about 2 ns, and perfect photostability at room temperature under our excitation conditions. Development of a triggered single-photon source relying on this single color center is discussed for application to quantum key distribution.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: