Observations of multiwavelength Mie-Raman lidar taken during the SHADOW field campaign are used to analyze a smoke-dust episode over West Africa on 24-27 December 2015. For the case considered, the dust layer extended from the ground up to approximately 2000 m while the elevated smoke layer occurred in the 2500-4000 m range. The profiles of lidar measured backscattering, extinction coefficients, and depolarization ratios are compared with the vertical distribution of aerosol parameters provided by the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2).
View Article and Find Full Text PDFPolarization observation of sky radiation is the frontier approach to improve the remote sensing of atmospheric components, e.g., aerosol and clouds.
View Article and Find Full Text PDFThis study evaluates the potential of using aerosol optical depth ( ) measurements to characterise the microphysical and optical properties of atmospheric aerosols. With this aim, we used the recently developed GRASP (Generalized Retrieval of Aerosol and Surface Properties) code for numerical testing of six different aerosol models with different aerosol loads. The direct numerical simulations (self-consistency tests) indicate that the GRASP-AOD retrieval provides modal aerosol optical depths (fine and coarse) to within 0.
View Article and Find Full Text PDFThe Cimel new technologies allow both daytime and nighttime aerosol optical depth (AOD) measurements. Although the daytime AOD calibration protocols are well established, accurate and simple nighttime calibration is still a challenging task. Standard lunar-Langley and intercomparison calibration methods both require specific conditions in terms of atmospheric stability and site condition.
View Article and Find Full Text PDFA calibration method is introduced to transfer calibration constants from the reference to secondary sunphotometers using a laboratory integrating sphere as a light source, instead of the traditional transferring approach performed at specific calibration sites based on sunlight. The viewing solid angle and spectral response effects of the photometer are taken into account in the transfer, and thus the method can be applied to different types of sunphotometers widely used in the field of atmospheric observation. A laboratory experiment is performed to illustrate this approach for four types of CIMEL CE318 sunphotometers belonging to the aerosol robotic network (AERONET).
View Article and Find Full Text PDFWe establish a polarimetric reference for the degree of linear polarization (DOLP) measurement calibration, based on direct and reflected solar light, with a theoretical error of about 0.0012. This calibration source can be used to calibrate polarized radiometers instead of complex laboratory devices and can respond from UV to near infrared wavelengths.
View Article and Find Full Text PDFTwo types of sunphotometric measurement are considered in this study: direct-Sun irradiance and diffuse-sky radiance. Based on CIMEL CE318 Sun-sky radiometer characteristics, we introduce a gain-corrected solid angle that allows interconverting calibration coefficients of these two types of measurement, thus realizing a "vicarious" radiance calibration. The accuracy of the gain-corrected solid angle depends on the number of available historical calibration records.
View Article and Find Full Text PDFWe have systematically processed one year of sunphotometer measurements (recorded at five AERONET/PHOTONS sites in Africa) in order to assess mineral dust optical properties with the use of a new polarimetry-based algorithm. We consider the Cimel CE318 polarized sunphotometer version to obtain single-scattering albedo, scattering phase matrix elements F(11) and F(12) for dust aerosols selected with Angström exponents ranging from -0.05 to 0.
View Article and Find Full Text PDF