The present study investigated the role of endothelial brain-derived neurotrophic factor (BDNF) in cognition. Male adult mice with a selective knockout of BDNF in endothelial cells () and their wild-type (WT) littermates were subjected to tests for detection of anxiety- and depression-like behaviors and impaired recognition memory. Neuronal activity and synaptogenesis were assessed from hippocampal levels of c-fos and synaptophysin, respectively, and cerebral capillary density from forebrain levels of CD31.
View Article and Find Full Text PDFAn increasing body of evidence confirms the effectiveness of physical exercise (PE) in promoting brain health by preventing age-related cognitive decline and reducing the risk of neurodegenerative diseases. The benefits of PE are attributed to neuroplasticity processes which have been reported to enhance cerebral health. However, moderate to high-intensity PE is necessary to induce these responses and these intensities cannot always be achieved especially by people with physical limitations.
View Article and Find Full Text PDFInteraction with the environment appears necessary for the maturation of sensorimotor and cognitive functions in early life. In rats, a model of sensorimotor restriction (SMR) from postnatal day 1 (P1) to P28 has shown that low and atypical sensorimotor activities induced the perturbation of motor behavior due to muscle weakness and the functional disorganization of the primary somatosensory and motor cortices. In the present study, our objective was to understand how SMR affects the muscle-brain dialogue.
View Article and Find Full Text PDFPhysical exercise (EX) is well established for its positive impact on brain health. However, conventional EX may not be feasible for certain individuals. In this regard, this study explores electromyostimulation (EMS) as a potential alternative for enhancing cognitive function.
View Article and Find Full Text PDFThe positive effects of physical exercise (EX) are well known to be mediated by cerebral BDNF (brain-derived neurotrophic factor), a neurotrophin involved in learning and memory, the expression of which could be induced by circulating irisin, a peptide derived from Fibronectin type III domain-containing protein 5 (FNDC5) produced by skeletal muscle contraction. While the influence of EX modalities on cerebral BDNF expression was characterized, their effect on muscle FNDC5/Irisin expression and circulating irisin levels remains to be explored. The present study involved Wistar rats divided into four experimental groups: sedentary (SED), low- (40% of maximal aerobic speed, MAS), intermediate- (50% of MAS) and high- (70% of MAS) intensities of treadmill EX (30 min/day, 7 days).
View Article and Find Full Text PDFAccumulating evidence supports that physical exercise (EX) is the most effective non-pharmacological strategy to improve brain health. EX prevents cognitive decline associated with age and decreases the risk of developing neurodegenerative diseases and psychiatric disorders. These positive effects of EX can be attributed to an increase in neurogenesis and neuroplastic processes, leading to learning and memory improvement.
View Article and Find Full Text PDFElevation of cerebral blood flow (CBF) may contribute to the cerebral benefits of the regular practice of physical exercise. Surprisingly, while electrically induced contraction of a large muscular mass is a potential substitute for physical exercise to improve cognition, its effect on CBF remains to be investigated. Therefore, the present study investigated CBF in the cortical area representing the hindlimb, the hippocampus and the prefrontal cortex in the same anesthetized rats subjected to either acute (30 min) or chronic (30 min for 7 days) electrically induced bilateral hindlimb contraction.
View Article and Find Full Text PDFBDNF (brain-derived neurotrophic factor) is present in skeletal muscle, controlling muscular metabolism, strength and regeneration processes. However, there is no consensus on BDNF cellular source. Furthermore, while endothelial tissue expresses BDNF in large amount, whether endothelial cells inside muscle expressed BDNF has never been explored.
View Article and Find Full Text PDFRheumatoid arthritis (RA) is an autoimmune chronic inflammatory disease characterized by synovitis leading to joint destruction, pain and disability. Despite efficient antirheumatic drugs, neuropsychiatric troubles including depression and cognitive dysfunction are common in RA but the underlying mechanisms are unclear. However, converging evidence strongly suggests that deficit in brain-derived neurotrophic factor (BDNF) signalling contributes to impaired cognition and depression.
View Article and Find Full Text PDFMost of what is known on vascular brain-derived neurotrophic factor (BDNF) derived from experiments on cultured endothelial cells. Therefore, the present study compared BDNF levels/localization in artery (aorta) vs vein (vena cava) from a same territory in rats either sedentary (SED) or exposed to treadmill exercise (EX) as a mean to stimulate endogenous endothelial nitric oxide (NO) production. In SED rats, for both artery and vein, BDNF was strongly expressed by endothelial cells, while only a faint and scattered expression was observed throughout the media.
View Article and Find Full Text PDFThe aims of the present study were to investigate in brain of adult rats (1) whether exercise-induced activation of brain-derived neurotrophic factor (BDNF)/tropomyosin-related kinase B (TrkB) pathway is dependent on exercise intensity modality and (2) whether exercise-induced improvement of memory is proportional to this pathway activation. Wistar rats were subjected to low (12 m/min) or high (18 m/min) exercise intensity on horizontal treadmill (30 min/day, 7 consecutive days) that corresponds to ~ 40 and 70% of maximal aerobic speed, respectively. Animals treated with scopolamine to induce memory impairment were subjected to novel object recognition test to assess potential improvement in cognitive function.
View Article and Find Full Text PDFMed Sci Sports Exerc
January 2019
Introduction: The elevation of brain-derived neurotrophic factor (BDNF) levels in the brain and the subsequent phosphorylation of its cognate tropomyosin-related kinase B (TrkB) receptors at tyrosine 816 (pTrkB) are largely involved in the positive effect of aerobic exercise on brain functioning. Although BDNF levels were reported to increase in proportion with exercise intensity, the effect of the type of contraction is unknown. Therefore, the cerebral BDNF/TrkB pathway was investigated after uphill and downhill treadmill activities at equivalent intensity to preferentially induce eccentric and concentric contractions, respectively.
View Article and Find Full Text PDFBackground And Aims: In rheumatoid arthritis, the control of both disease activity and standard cardiovascular (CV) risk factors is expected to attenuate the increased CV risk. Evidence that brain-derived neurotrophic factor (BDNF) plays a role in vascular biology led us to investigate the vascular BDNF pathway in arthritis rats as well as the interaction between endothelial nitric oxide (NO) and BDNF production.
Methods: The aortic BDNF pathway was studied in rats with adjuvant-induced arthritis, (AIA) using Western blot and immunohistochemical analysis.
Low cerebral levels of brain-derived neurotrophic factor (BDNF), which plays a critical role in many brain functions, have been implicated in neurodegenerative, neurological and psychiatric diseases. Thus, increasing BDNF levels in the brain is considered an attractive possibility for the prevention/treatment of various brain diseases. To date, BDNF-based therapies have largely focused on neurons.
View Article and Find Full Text PDFCognitive abilities are largely dependent on activation of cerebral tropomyosin-related kinase B receptors (TrkB) by brain-derived neurotrophic factor (BDNF) that is secreted under a bioactive form by both neurons and endothelial cells. In addition, there is mounting evidence for a link between endothelial function and cognition even though the underlying mechanisms are not well known. Therefore, we investigated the cerebral BDNF pathway, either neuronal or endothelial, in rheumatoid arthritis (RA) that combines both endothelial dysfunction (ED) and impaired cognition.
View Article and Find Full Text PDFObjective: Decreased brain-derived neurotrophic factor (BDNF) level has been reported in the hippocampus of hypertensive rats. The present study explored whether brain neurons and/or endothelial cells are targeted by hypertension with respect to BDNF expression and the potential of physical exercise to cope with hypertension.
Methods: Physical exercise was induced in spontaneously hypertensive rats (SHR) and Wistar Kyoto (WKY) rats.
Scientific evidence continues to demonstrate a link between endothelial function and cognition. Besides, several studies have identified a complex interplay between nitric oxide (NO) and brain-derived neurotrophic factor (BDNF), a neurotrophin largely involved in cognition. Therefore, this study investigated the link between cerebral endothelium-derived NO and BDNF signaling.
View Article and Find Full Text PDFThe recombinant form of tissue plasminogen activator (rt-PA) is the only curative treatment for ischemic stroke. Recently, t-PA has been linked to the metabolism of brain-derived neurotrophic factor (BDNF), a major neurotrophin involved in post-stroke neuroplasticity. Thus, the objective of our study was to investigate the impact of rt-PA treatment on post-stroke circulating BDNF levels in humans and in animals.
View Article and Find Full Text PDFBackground: Chronic constipation is frequent in children. The objective of this study is to compare the efficacy and safety of PEG 4000 and lactulose for the treatment of chronic constipation in young children.
Methods: This randomised, double-blind study enrolled 88 young children aged 12 to 36 months, who were randomly assigned to receive lactulose (3.
Brain-derived neurotrophic factor (BDNF) through TrkB activation is central for brain functioning. Since the demonstration that plasmin is able to process pro-BDNF to mature BDNF and that these two forms have opposite effects on neuronal survival and plasticity, a particular attention has been paid to the link between tissue plasminogen activator (tPA)/plasmin system and BDNF metabolism. However, t-PA via its action on different N-methyl-D-aspartate (NMDA) receptor subunits is also considered as a neuromodulator of glutamatergic transmission.
View Article and Find Full Text PDFBecause arginase and nitric oxide (NO) synthases (NOS) compete to degrade l-arginine, arginase plays a crucial role in the modulation of NO production. Moreover, the arginase 1 isoform is a marker of M2 phenotype macrophages that play a key role in tissue remodeling and resolution of inflammation. While NO has been extensively investigated in ischemic stroke, the effect of stroke on the arginase pathway is unknown.
View Article and Find Full Text PDFBackground: Prevention strategies are urgently needed to tackle the growing burden of Alzheimer's disease. We aimed to assess efficacy of long-term use of standardised ginkgo biloba extract for the reduction of incidence of Alzheimer's disease in elderly adults with memory complaints.
Methods: In the randomised, parallel-group, double-blind, placebo-controlled GuidAge clinical trial, we enrolled adults aged 70 years or older who spontaneously reported memory complaints to their primary-care physician in France.