Phys Rev E Stat Nonlin Soft Matter Phys
July 2006
A longstanding problem in the study of sediment transport in gravel-bed rivers is related to the physical mechanisms governing bed resistance and particle motion. To study this problem, we investigated the motion of coarse spherical glass beads entrained by a steady shallow turbulent water flow down a steep two-dimensional channel with a mobile bed. This experimental facility is the simplest representation of sediment transport on the laboratory scale, with the tremendous advantages that boundary conditions are perfectly controlled and a wealth of information can be obtained using imaging techniques.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
January 2003
This paper investigates the two-dimensional rolling motion of a single large particle in a shallow water stream down a steep rough bed from both an experimental and a theoretical point of view. The experiment is prototypal of sediment transport on sloping beds. Two theoretical models are presented.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
September 2002
This paper experimentally and numerically investigates the two-dimensional saltating motion of a single large particle in a shallow water stream down a steep rough bed. The experiment is prototypical of sediment transport on sloping beds. Similar to the earlier experimental results on fine particles entrained by a turbulent stream, we found that most features of the particle motion were controlled by a dimensionless shear stress (also called the Shields number) N(Sh) defined as the ratio of the bottom shear stress exerted by the water flow to the buoyant weight of the particle (scaled by its cross-sectional area to obtain a stress).
View Article and Find Full Text PDF