Background: Evidence is accumulating that the continuous exposure to high glucose concentrations during peritoneal dialysis (PD) is an important cause of ultrafiltration (UF) failure. The cornerstone of prevention and treatment of UF failure is reduction of glucose exposure, which will also alleviate the systemic impact of significant free glucose absorption. The challenge for the future is to discover new therapeutic strategies to enhance fluid and sodium removal while diminishing glucose load and exposure using combinations of available osmotic agents.
View Article and Find Full Text PDFBackground: Controlling extracellular volume and plasma sodium concentration are two crucial objectives of dialysis therapy, as inadequate sodium and fluid removal by dialysis may result in extracellular volume overload, hypertension, and increased cardiovascular morbidity and mortality in end-stage renal disease patients. A new concept to enhance sodium and fluid removal during peritoneal dialysis (PD) is the use of dialysis solutions with two different osmotic agents.
Aim: To investigate and compare, with the help of mathematical modeling and computer simulations, fluid and solute transport during PD with conventional dialysis fluids (3.
Background: Fluid and sodium removal is often inadequate in peritoneal dialysis patients with high peritoneal solute transport rate, especially when residual renal function is declining.
Method: We studied the effects of using simultaneous crystalloid (glucose) and colloid (icodextrin) osmotic agents on the peritoneal transport of fluid, sodium, and other solutes during 15-hour single-dwell exchanges using 3.86% glucose, 7.
Background: Growing concern over the limited capacity of the peritoneal dialysis (PD) system has revived interest in continuous flow peritoneal dialysis (CFPD), a modality in which continuous circulation of PD fluid is maintained at a high flow rate using two separate catheters or one dual-lumen catheter. The CFPD regimen contrasts the "inflow/outflow" regimen, which requires specific times devoted to filling and draining the peritoneum via a single-lumen catheter. Historical data established CFPD capabilities in providing higher solute clearance and ultrafiltration rate (UFR) using either an open loop system with a single pass of fresh PD fluid, or various external purifications of the spent dialysate.
View Article and Find Full Text PDFIn a randomized, prospective, multicenter study, we compared the safety, efficacy, and metabolic effects of a 7.5% icodextrin solution (Extraneal) with a 2.27% glucose solution for long dwell exchanges in patients undergoing automated peritoneal dialysis.
View Article and Find Full Text PDF