Many strategies have been proposed to circumvent cancer development or prevent its growth. One of the promising strategies is to direct the immune response toward tumour antigens. This can be achieved by loading dendritic cells, the most potent antigen presenting cells, with tumour antigens.
View Article and Find Full Text PDFWe demonstrate here that VP4, a rotaviral protein, is able to specifically bind to bundled actin microfilaments that are subsequently profoundly remodeled into actin bodies. These cytoplasmic actin bodies do not localize within identified intracellular compartments. VP4-induced actin remodeling is similar to cytochalasin D effects with kinetics compatible with that of rotavirus infection.
View Article and Find Full Text PDFCell and tissue imaging provides scientists with wonderful tools, thanks to a fruitful dialog between chemistry, optical, mechanical, computational sciences and biology. Confocal microscopy, videomicroscopy together with a new generation of fluorochromes (especially those derived from green fluorescent protein, GFP) and image analysis software allow to visualize life in all its dimensions (space and time). Cell imaging also allows to quantify biological processes at the cellular level, to analyse both stoechiometry and dynamics of molecular interactions involved in cell and tissue regulations.
View Article and Find Full Text PDFAccumulating evidence supports a role of chemokines and their receptors in brain function. Up to now scarce evidence has been given of the neuroanatomical distribution of chemokine receptors. Although it is widely accepted that chemokine receptors are present on glial cells, especially in pathological conditions, it remains unclear whether they are constitutively present in normal rat brain and whether neurons have the potential to express such chemokine receptors.
View Article and Find Full Text PDF