Forests cover approximately 70% of the area contaminated by the Fukushima Daiichi Nuclear Power Plant accident in 2011. Following this severe contamination event, radiocaesium (Cs) is anticipated to circulate within these forest ecosystems for several decades. Since the accident, a number of models have been constructed to evaluate the past and future dynamics of Cs in these forests.
View Article and Find Full Text PDFSince the Fukushima accident, Japanese scientists have been intensively monitoring ambient radiations in the highly contaminated territories situated within 80 km of the nuclear site. The surveys that were conducted through mainly carborne, airborne and in situ gamma-ray measurement devices, enabled to efficiently characterize the spatial distribution and temporal evolution of air dose rates induced by Caesium-134 and Caesium-137 in the terrestrial systems. These measurements revealed that radiation levels decreased at rates greater than expected from physical decay in 2011-2012 (up to a factor of 2), and dependent on the type of environment (i.
View Article and Find Full Text PDFTritium and (14)C are currently the two main radionuclides discharged by nuclear industry. Tritium integrates into and closely follows the water cycle and, as shown recently the carbon cycle, as does (14)C (Eyrolle-Boyer et al., 2014a, b).
View Article and Find Full Text PDFJ Environ Radioact
September 2009
Compared to agricultural lands, forests are complex ecosystems as they can involve diverse plant species associations, several vegetative strata (overstorey, shrubs, herbaceous and other annual plant layer) and multi-layered soil profiles (forest floor, hemi-organic and mineral layers). A high degree of variability is thus generally observed in radionuclide transfers and redistribution patterns in contaminated forests. In the long term, the soil compartment represents the major reservoir of radionuclides which can give rise to long-term plant and hence food contamination.
View Article and Find Full Text PDF