Objective: To study the cyclic fertilin peptide effects on preimplantation human embryogenesis. Cyclic fertilin peptide reproduces the structure of the binding site of the sperm Fertilin β (also named A Disintegrin and Metalloprotease 2: ADAM2) disintegrin domain. It binds to the oocyte membrane and increases sperm-oocyte fusion index in human and fertilization rate in mouse, providing healthy pups.
View Article and Find Full Text PDFObjective: To analyze the effect of a cyclic fertilin-derived peptide (cFEE) on in vitro maturation of human oocytes.
Design: Randomized study.
Setting: Fertility center in an academic hospital.
The hereditary neurodegenerative disorder spinal muscular atrophy (SMA) is characterized by the loss of spinal cord motor neurons and skeletal muscle atrophy. SMA is caused by mutations of the survival motor neuron (SMN) gene leading to a decrease in SMN protein levels. The SMN deficiency alters nuclear body formation and whether it can contribute to the disease remains unclear.
View Article and Find Full Text PDFMitochondrial DNA (mtDNA) content is thought to remain stable over the preimplantation period of human embryogenesis that is, therefore, suggested to be entirely dependent on ooplasm mtDNA capital. We have explored the impact of two disease-causing mutations [m.3243A>G myopathy, encephalopathy, lactic acidosis and stroke-like syndrome (MELAS) and m.
View Article and Find Full Text PDFThe spinal muscular atrophy (SMA) gene product SMN forms with gem-associated protein 2-8 (Gemin2-8) and unrip (also known as STRAP) the ubiquitous survival motor neuron (SMN) complex, which is required for the assembly of spliceosomal small nuclear ribonucleoproteins (snRNPs), their nuclear import and their localization to subnuclear domain Cajal bodies (CBs). The concentration of the SMN complex and snRNPs in CBs is reduced upon SMN deficiency in SMA cells. Subcellular localization of the SMN complex is regulated in a phosphorylation-dependent manner and the precise mechanisms remain poorly understood.
View Article and Find Full Text PDFUmut-Talha, a "sibling savior", was born on 26 January 2011 at Beclère Hospital after embryo selection at the Paris preimplantation genetic diagnosis (PGD) center. His birth revived the controversy over "double PGD". This procedure, authorized in France since 2006, allows couples who already have a child with a serious, incurable genetic disease, to opt for PGD in order to select a healthy embryo that is HLA-matched to the affected sibling and who may thus serve as an ombilical cord blood donor.
View Article and Find Full Text PDFPreimplantation genetic diagnosis (PGD) has been authorized in France since 1999. Encouraging results have been obtained during the past 10 years in our Paris center, where 832 patients have undergone 1056 IVF-PGD procedures. With the advent of new techniques for the identification of genetic disease markers, our center can now offer PGD procedures for aneuploidy and 75 single-gene diseases.
View Article and Find Full Text PDFBecause the mtDNA amount remains stable in the early embryo until uterine implantation, early human development is completely dependent on the mtDNA pool of the mature oocyte. Both quantitative and qualitative mtDNA defects therefore may negatively impact oocyte competence or early embryonic development. However, nothing is known about segregation of mutant and wild-type mtDNA molecules during human meiosis.
View Article and Find Full Text PDFMitochondrial DNA (mtDNA) mutations cause a wide range of serious diseases with high transmission risk and maternal inheritance. Tissue heterogeneity of the heteroplasmy rate ("mutant load") accounts for the wide phenotypic spectrum observed in carriers. Owing to the absence of therapy, couples at risk to transmit such disorders commonly ask for prenatal (PND) or preimplantation diagnosis (PGD).
View Article and Find Full Text PDFWith the detection of a homozygous deletion of the survival motor neuron 1 gene (SMN1), prenatal and preimplantation genetic diagnosis (PGD) for spinal muscular atrophy has become feasible and widely applied. The finding of a de novo rearrangement, resulting in the loss of the SMN1 gene, reduces the recurrence risk from 25% to a lower percentage, the residual risk arising from recurrent de novo mutation or germline mosaicism. In a couple referred to our PGD center because their first child was affected with SMA, the male partner was shown to carry two SMN1 copies.
View Article and Find Full Text PDFSpinal muscular atrophy (SMA) is a common autosomal recessive neurodegenerative disease caused by reduced survival motor neuron (SMN) levels. The assembly machinery containing SMN is implicated in the biogenesis of the spliceosomal small nuclear ribonucleoproteins (snRNPs). SMN is present in both the cytoplasm and nucleus, where it transiently accumulates in subnuclear domains named Cajal bodies (CBs) and functions in the maturation of snRNPs and small nucleolar (sno)RNPs.
View Article and Find Full Text PDFObjective: To develop and validate a simple and reliable single-cell analysis protocol for the preimplantation genetic diagnosis (PGD) of spinal muscular atrophy (SMA).
Design: Molecular tests based on specific enzymatic digestion have already been described for SMA diagnosis. We modified the amplified DNA fragments so as to introduce a novel restriction site that provides an internal control for the completeness of the digestion.
When a mitochondrial DNA (mtDNA) mutation is identified, the reliable and sensitive quantification of the mutation load is a prerequisite for evaluating the feasibility of prenatal/pregestational diagnosis of the disease. We have developed a quantification assay of the 8993T>G NARP mutation using semi-quantitative fluorescent PCR. The test was reproducible and the experimental values were linear even at extremely low concentrations of mutant mtDNA molecules, making quantification of the mutant load in individual cells feasible (including blastomeres).
View Article and Find Full Text PDFSpinal muscular atrophy (SMA) is a common autosomal recessive disease. SMA is linked to the 5q13 locus in 95% of patients, and in at least 98% of them, the SMN1 homozygous deletion is found. Compound heterozygous patients, who have an SMN1 deletion associated with a subtle mutation, appear undeleted with the common molecular diagnostic test that detects only the homozygous absence of SMN1.
View Article and Find Full Text PDFPreimplantation genetic diagnosis (PGD) first consisted of the selection of female embryos for patients at risk of transmitting X-linked recessive diseases. Advances in molecular biology now allow the specific diagnosis of almost any Mendelian disease. For families with an identified X-linked recessive disease-causing mutation, non-specific diagnosis by sex identification can be considered as a sub-standard method, since it involves the unnecessary disposal of healthy male embryos and reduces success rate by diminishing the pool of embryos eligible for transfer.
View Article and Find Full Text PDFDistal spinal muscular atrophy is a heterogeneous group of neuromuscular disorders caused by progressive anterior horn cell degeneration and characterized by progressive motor weakness and muscular atrophy, predominantly in the distal parts of the limbs. Here we report on chronic autosomal recessive distal spinal muscular atrophy in a large, inbred family with onset at various ages. Because this condition had some of the same clinical features as spinal muscular atrophy with respiratory distress, we tested the disease gene for linkage to chromosome 11q and mapped the disease locus to chromosome 11q13 in the genetic interval that included the spinal muscular atrophy with respiratory distress gene (D11S1889-D11S1321, Z(max) = 4.
View Article and Find Full Text PDFSpinal muscular atrophy (SMA) is caused by the loss of functional survival motor neuron 1 (SMN1) protein. This ubiquitously expressed protein is a component of a novel complex immunodetected in both the cytoplasm and the nucleus, which is associated with complexes involved in mRNA splicing, ribosome biogenesis and transcription. Here, we study a mutant protein corresponding to the N-terminal half of the protein that is encoded by the SMA frameshift mutation SMN 472del5.
View Article and Find Full Text PDF