Publications by authors named "Philippe Boeuf"

Background: Mycoplasma genitalium infection in pregnancy is increasingly reported at similar frequencies to other sexually transmitted infections (STIs). Knowledge on its contribution to adverse pregnancy outcomes is very limited, especially relative to other STIs or bacterial vaginosis (BV). Whether M.

View Article and Find Full Text PDF
Article Synopsis
  • * A study of 699 pregnant women revealed high rates of anemia, particularly during pregnancy, with iron deficiency being a major contributor—responsible for over 72% of anemia cases during pregnancy and 20%-37% postpartum.
  • * Early intervention with iron supplements during pregnancy and between pregnancies could help reduce chronic anemia in women of reproductive age, suggesting a need for timely anemia management strategies.
View Article and Find Full Text PDF

A highly protective vaccine will greatly facilitate achieving and sustaining malaria elimination. Understanding mechanisms of antibody-mediated immunity is crucial for developing vaccines with high efficacy. Here, we identify key roles in humoral immunity for Fcγ-receptor (FcγR) interactions and opsonic phagocytosis of sporozoites.

View Article and Find Full Text PDF
Article Synopsis
  • In 2008, guidelines were established for researching autophagy, which has since gained significant interest and new technologies, necessitating regular updates to monitoring methods across various organisms.
  • The new guidelines emphasize selecting appropriate techniques to evaluate autophagy while noting that no single method suits all situations; thus, a combination of methods is encouraged.
  • The document highlights that key proteins involved in autophagy also impact other cellular processes, suggesting genetic studies should focus on multiple autophagy-related genes to fully understand these pathways.
View Article and Find Full Text PDF

Much about the range of pathogens, frequency of coinfection, and clinical effects of reproductive tract infections (RTIs) among pregnant women remains unknown. We report on RTIs (Mycoplasma genitalium, Chlamydia trachomatis, Neisseria gonorrhoeae, Trichomonas vaginalis, Treponema pallidum subspecies pallidum, bacterial vaginosis, and vulvovaginal candidiasis) and other reproductive health indicators in 699 pregnant women in Papua New Guinea during 2015-2017. We found M.

View Article and Find Full Text PDF

Decreased l-arginine and nitric oxide bioavailability in pregnant women with malaria contributes to low birth weight, suggesting that l-arginine supplementation could be a potential treatment (McDonald ).

View Article and Find Full Text PDF

Background: Placental malaria is a major cause of low birthweight, principally due to impaired fetal growth. Intervillositis, a local inflammatory response to placental malaria, is central to the pathogenesis of poor fetal growth as it impairs transplacental amino acid transport. Given the link between inflammation and autophagy, we investigated whether placental malaria-associated intervillositis increased placental autophagy as a potential mechanism in impaired fetal growth.

View Article and Find Full Text PDF

Background: We investigated the poorly understood impact of declining malaria transmission on maintenance of antibodies to Plasmodium falciparum merozoite antigens and infected erythrocytes (IEs), including functional immunity.

Methods: In a 3-year longitudinal cohort of 300 Kenyan children, antibodies to different AMA1 and MSP2 alleles of merozoites, IE surface antigens, and antibody functional activities were quantified.

Results: Over a period in which malaria transmission declined markedly, AMA1 and MSP2 antibodies decreased substantially; estimated half-lives of antibody duration were 0.

View Article and Find Full Text PDF

Background: Placental Plasmodium falciparum malaria can trigger intervillositis, a local inflammatory response more strongly associated with low birthweight than placental malaria infection alone. Fetal growth (and therefore birthweight) is dependent on placental amino acid transport, which is impaired in placental malaria-associated intervillositis. Here, we tested the hypothesis that mechanistic target of rapamycin (mTOR) signaling, a pathway known to regulate amino acid transport, is inhibited in placental malaria-associated intervillositis, contributing to lower birthweight.

View Article and Find Full Text PDF

Signal transduction and kinomics have been rapidly expanding areas of investigation within the malaria research field. Here, we provide an overview of phosphosignalling pathways that operate in all stages of the Plasmodium life cycle. We review signalling pathways in the parasite itself, in the cells it invades, and in other cells of the vertebrate host with which it interacts.

View Article and Find Full Text PDF

Placental responses to maternal perturbations are complex and remain poorly understood. Altered maternal environment during pregnancy such as hypoxia, stress, obesity, diabetes, toxins, altered nutrition, inflammation, and reduced utero-placental blood flow may influence fetal development, which can predispose to diseases later in life. The placenta being a metabolically active tissue responds to these perturbations by regulating the fetal supply of nutrients and oxygen and secretion of hormones into the maternal and fetal circulation.

View Article and Find Full Text PDF

With increasing malaria control and goals of malaria elimination, many endemic areas are transitioning from high-to-low-to-no malaria transmission. Reductions in transmission will impact on the development of naturally acquired immunity to malaria, which develops after repeated exposure to Plasmodium spp. However, it is currently unclear how declining transmission and malaria exposure will affect the development and maintenance of naturally acquired immunity.

View Article and Find Full Text PDF

Infection with Plasmodium falciparum parasites causes the majority of malaria-related morbidity and mortality. Constant exposure to the pathogen leads to the acquisition of antibodies and high levels of antibodies have been associated with clinical protection against malaria. A possible protective mechanism is the opsonization of parasites, or malaria-infected erythrocytes (IEs), for phagocytic clearance.

View Article and Find Full Text PDF

In Papua New Guinea, intermittent preventive treatment with sulphadoxine-pyrimethamine and azithromycin (SPAZ-IPTp) increased birthweight despite limited impact on malaria and sexually transmitted infections. To explore possible nutrition-related mechanisms, we evaluated associations between gestational weight gain (GWG), enrolment body mass index (BMI) and mid-upper arm circumference (MUAC), and birthweight. We investigated whether the increase in birthweight associated with SPAZ-IPTp may partly be driven by a treatment effect on GWG.

View Article and Find Full Text PDF

Artemisinin-based combination therapies (ACTs) are the cornerstone for the treatment of malaria. However, confirmed resistance to artemisinins in South-East Asia, and reports of reduced efficacy of ACTs raise major concerns for malaria treatment and control. Without new drugs to replace artemisinins, it is essential to define dosing strategies that maximize therapeutic efficacy, limit the spread of resistance, and preserve the clinical value of ACTs.

View Article and Find Full Text PDF

During gestational malaria, Plasmodium falciparum-infected erythrocytes can sequester within the placenta, contributing to poor pregnancy outcomes, especially low birth weight. In children and non-pregnant adults, pigmented leukocytes may serve as markers of sequestered parasite burden and predict clinical outcomes. Here, we investigated circulating pigmented leukocyte numbers as predictors of clinical outcomes in pregnant women presenting with malaria at enrolment.

View Article and Find Full Text PDF

Placental malaria is a major health problem for both pregnant women and their fetuses in malaria endemic regions. It is triggered by the accumulation of Plasmodium falciparum-infected erythrocytes (IE) in the intervillous spaces of the placenta and is associated with foetal growth restriction and maternal anemia. IE accumulation is supported by the binding of the parasite-expressed protein VAR2CSA to placental chondroitin sulfate A (CSA).

View Article and Find Full Text PDF

Placental malaria, especially when complicated with intervillositis, can cause fetal growth restriction. Transplacental glucose transport by glucose transporter isoform 1 (GLUT-1) on the syncytiotrophoblast microvillous and basal plasma membranes regulates fetal growth. We found that GLUT-1 expression in the microvillous plasma membrane of Plasmodium falciparum-negative placenta biopsy specimens was comparable to that in P.

View Article and Find Full Text PDF

In Plasmodium falciparum malaria, activation of monocytes and macrophages (monocytes/macrophages) can result in the production of various inflammatory mediators that contribute to immunopathology. Soluble CD163 (sCD163) is a specific marker of monocyte/macrophage activation typically found at increased levels during various inflammatory conditions and can be associated with poor clinical outcomes. To better understand the relationships between levels of sCD163 and clinical parameters in women with placental malaria, we measured plasma sCD163 levels in maternal peripheral and placental blood compartments at delivery and determined their correlations with birth weight and maternal haemoglobin concentrations.

View Article and Find Full Text PDF

Placental malaria (PM) can lead to poor neonatal outcomes, including low birthweight due to fetal growth restriction (FGR), especially when associated with local inflammation (intervillositis or IV). The pathogenesis of PM-associated FGR is largely unknown, but in idiopathic FGR, impaired transplacental amino acid transport, especially through the system A group of amino acid transporters, has been implicated. We hypothesized that PM-associated FGR could result from impairment of transplacental amino acid transport triggered by IV.

View Article and Find Full Text PDF

Recruitment and activation of monocytes and macrophages are essential for clearance of malaria infection, but these have also been associated with adverse clinical outcomes. In this review we discuss recent discoveries on how distinct molecular interactions between monocytes, macrophages, and malaria parasites may alter the balance between protection and pathology in malaria-infected individuals. The immunopathology of severe malaria often originates from excessive immune activation by parasites.

View Article and Find Full Text PDF

Background: Severe malarial anaemia (SMA) is a major life-threatening complication of paediatric malaria. Protracted production of pro-inflammatory cytokines promoting erythrophagocytosis and depressing erythropoiesis is thought to play an important role in SMA, which is characterized by a high TNF/IL-10 ratio. Whether this TNF/IL-10 imbalance results from an intrinsic incapacity of SMA patients to produce IL-10 or from an IL-10 unresponsiveness to infection is unknown.

View Article and Find Full Text PDF

In placental malaria, Plasmodium falciparum-infected erythrocytes adhere to the apical plasma membrane of the placental epithelium, triggering an impairment of placental function detrimental to the fetus. The design of anti-adhesion intervention strategies requires a detailed understanding of the mechanisms involved. However, most adhesion assays lack in vivo relevance and are hardly quantitative.

View Article and Find Full Text PDF

Background: The pathogenetic mechanisms of fetal growth restriction associated with placental malaria are largely unknown. We sought to determine whether placental malaria and related inflammation were associated with disturbances in the insulin-like growth factor (IGF) axis, a major regulator of fetal growth.

Method: We measured IGF-1 and IGF-2 concentrations in plasma from 88 mother-neonate pairs at delivery and IGF binding proteins 1 and 3 (IGFBP-1 and IGFBP-3, respectively) in cord plasma from a cohort of Papua New Guinean women with and without placental malaria.

View Article and Find Full Text PDF

Background: Placental malaria causes fetal growth retardation (FGR), which has been linked epidemiologically to placental monocyte infiltrates. We investigated whether parasite or monocyte infiltrates were associated with placental hypoxia, as a potential mechanism underlying malarial FGR.

Methods: We studied the hypoxia markers hypoxia inducible factor (HIF)-1alpha, vascular endothelial growth factor (VEGF), placental growth factor, VEGF receptor 1 and its soluble form, and VEGF receptor 2.

View Article and Find Full Text PDF