Publications by authors named "Philippe Bey"

Our laboratory has shown that calpain-2 activation in the brain following acute injury is directly related to neuronal damage and the long-term functional consequences of the injury, while calpain-1 activation is generally neuroprotective and calpain-1 deletion exacerbates neuronal injury. We have also shown that a relatively selective calpain-2 inhibitor, referred to as C2I, enhanced long-term potentiation and learning and memory, and provided neuroprotection in the controlled cortical impact (CCI) model of traumatic brain injury (TBI) in mice. Using molecular dynamic simulation and Site Identification by Ligand Competitive Saturation (SILCS) software, we generated about 130 analogs of C2I and tested them in a number of in vitro and in vivo assays.

View Article and Find Full Text PDF

Molecules associated with the transforming growth factor β (TGF-β) superfamily, such as bone morphogenic proteins (BMPs) and TGF-β, are key regulators of inflammation, apoptosis and cellular transitions. Here we show that the BMP receptor activin-like kinase 3 (Alk3) is elevated early in diseased kidneys after injury. We also found that its deletion in the tubular epithelium leads to enhanced TGF-β1-Smad family member 3 (Smad3) signaling, epithelial damage and fibrosis, suggesting a protective role for Alk3-mediated signaling in the kidney.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers synthesized novel difluorovinyl steroids as potential inhibitors of the enzyme C17(20) lyase, which is essential for testosterone production.
  • The method involved using a reagent to react with 17-acetyl steroids to create these compounds.
  • An interesting byproduct, abnormal Wittig products, emerged during the synthesis, and the resulting difluoroolefin was identified as a moderately potent, time-dependent inhibitor of the target enzyme.
View Article and Find Full Text PDF

20-fluoro-17(20)-pregnenolone derivatives were designed as enol mimics of pregnenolone. All of the targeted, novel fluoroolefins were potent inhibitors of C17(20) lyase.

View Article and Find Full Text PDF