Publications by authors named "Philippe Bado"

Quasi-phase matched second-harmonic generation at 532 nm is demonstrated in a channel waveguide that is written in bulk fused silica using a femtosecond laser. The second-order nonlinear grating is fabricated using uniform thermal poling followed by periodic erasure inside an e-beam deposition system caused, by what we believe to be, x-rays. A SHG conversion efficiency of 2 x10(-5) %/W-cm(2) was obtained for a 1 cm long device, corresponding to an effective nonlinear coefficient of 0.

View Article and Find Full Text PDF

We present a study of the sidewall surface quality inside microchannels fabricated in fused silica glass by femtosecond laser pulses and chemical etching. Multiple combinations of laser exposure and etching solution parameters were examined. Results of scanning electron microscopy, atomic force microscopy, and optical reflection analyses of the surfaces are presented.

View Article and Find Full Text PDF

Femtosecond laser pulses used in a regime below the ablation threshold have two noticeable effects on Fused Silica (a-SiO2): they locally increase the material refractive index and modify its HF etching selectivity. The nature of the structural changes induced by femtosecond laser pulses in fused silica is not fully understood. In this paper, we report on nanoindentation and birefringence measurements on fused silica exposed to low-energy femtosecond laser pulses.

View Article and Find Full Text PDF

An integrated electro-optic waveguide modulator is demonstrated in bulk fused silica. A Mach-Zehnder interferometer waveguide structure is fabricated by direct writing with a femtosecond laser followed by thermal poling. A 20 degrees electro-optic phase shift is achieved at an operating wavelength of 1.

View Article and Find Full Text PDF

Effective methods for manipulating, isolating and sorting cells and particles are essential for the development of microfluidic-based life science research and diagnostic platforms. We demonstrate an integrated optical platform for cell and particle sorting in microfluidic structures. Fluorescent-dyed particles are excited using an integrated optical waveguide network within micro-channels.

View Article and Find Full Text PDF

We present a novel optical sensor concept that merges integrated optics and micro-mechanics in a monolithic substrate. This concept pushes microsystems integration and defines a new class of monolithic optical microsystems where only optical signals are processed. As an illustration, we present a high-precision, monolithic, glass-based, micro-displacement sensor.

View Article and Find Full Text PDF

We present novel results obtained in the fabrication of high-aspect ratio micro-fluidic microstructures chemically etched from fused silica substrates locally exposed to femtosecond laser radiation. A volume sampling method to generate three-dimensional patterns is proposed and a systematic SEM-based analysis of the microstructure is presented. The results obtained gives new insights toward a better understanding of the femtosecond laser interaction with fused silica glass (a-SiO(2)).

View Article and Find Full Text PDF