Lancet Infect Dis
June 2018
Background: Scale-up of insecticide-based interventions has averted more than 500 million malaria cases since 2000. Increasing insecticide resistance could herald a rebound in disease and mortality. We aimed to investigate whether insecticide resistance was associated with loss of effectiveness of long-lasting insecticidal nets and increased malaria disease burden.
View Article and Find Full Text PDFInsecticide-based interventions have contributed to ∼78% of the reduction in the malaria burden in sub-Saharan Africa since 2000. Insecticide resistance in malaria vectors could presage a catastrophic rebound in disease incidence and mortality. A major impediment to the implementation of insecticide resistance management strategies is that evidence of the impact of resistance on malaria disease burden is limited.
View Article and Find Full Text PDFInsecticide resistance might reduce the efficacy of malaria vector control. In 2013 and 2014, malaria vectors from 50 villages, of varying pyrethroid resistance, in western Kenya were assayed for resistance to deltamethrin. Long-lasting insecticide-treated nets (LLIN) were distributed to households at universal coverage.
View Article and Find Full Text PDFIndoor residual spraying (IRS) combined with insecticide treated nets (ITN) has been implemented together in several sub-Saharan countries with inconclusive evidence that the combined intervention provides added benefit. The impact on malaria transmission was evaluated in a cluster randomised trial comparing two rounds of IRS with bendiocarb plus universal coverage ITNs, with ITNs alone in northern Tanzania. From April 2011 to December 2012, eight houses in 20 clusters per study arm were sampled monthly for one night with CDC light trap collections.
View Article and Find Full Text PDFBackground: Progress in reducing the malaria disease burden through the substantial scale up of insecticide-based vector control in recent years could be reversed by the widespread emergence of insecticide resistance. The impact of insecticide resistance on the protective effectiveness of insecticide-treated nets (ITN) and indoor residual spraying (IRS) is not known. A multi-country study was undertaken in Sudan, Kenya, India, Cameroon and Benin to quantify the potential loss of epidemiological effectiveness of ITNs and IRS due to decreased susceptibility of malaria vectors to insecticides.
View Article and Find Full Text PDFBackground: Insecticide treated nets (ITNs) and indoor residual spraying (IRS) are effective vector control tools that protect against malaria. There is conflicting evidence regarding whether using ITNs and IRS in combination provides additional benefit over using either of these methods alone. This study investigated factors that may modify the effect of the combined use of IRS and ITNs compared to using ITNs alone on malaria infection prevalence.
View Article and Find Full Text PDFBackground: Insecticide-treated nets (ITNs) and indoor residual spraying (IRS) of houses provide effective malaria transmission control. There is conflicting evidence about whether it is more beneficial to provide both interventions in combination. A cluster randomised controlled trial was conducted to investigate whether the combination provides added protection compared to ITNs alone.
View Article and Find Full Text PDFMalaria prevalence remains high in many African countries despite massive scaling-up of insecticide treated nets (ITN) and indoor residual spraying (IRS). This paper evaluates the protective effect of pyrethroid IRS and ITNs in relation to risk factors for malaria based on a study conducted in North-West Tanzania, where IRS has been conducted since 2007 and universal coverage of ITNs has been carried out recently. In 2011 community-based cross-sectional surveys were conducted in the two main malaria transmission periods that occur after the short and long rainy seasons.
View Article and Find Full Text PDFBackground: To control malaria in Tanzania, two primary vector control interventions are being scaled up: long-lasting insecticide-treated nets (LLINs) and indoor residual spraying (IRS). The main threat to effective malaria control is the selection of insecticide resistance. While resistance to pyrethroids, the primary insecticide used for LLINs and IRS, has been reported among mosquito vectors in only a few sites in Tanzania, neighbouring East African countries are recording increasing levels of resistance.
View Article and Find Full Text PDFBackground: Insecticide-treated nets (ITN) are one of the most effective measures for preventing malaria. Mass distribution campaigns are being used to rapidly increase net coverage in at-risk populations. This study had two purposes: to evaluate the impact of a universal coverage campaign (UCC) of long-lasting insecticidal nets (LLINs) on LLIN ownership and usage, and to identify factors that may be associated with inadequate coverage.
View Article and Find Full Text PDFBackground: Screening doors, windows and eaves of houses should reduce house entry by eusynanthropic insects, including the common African house mosquito Culex pipiens quinquefasciatus and other culicines. In the pre-intervention year of a randomized controlled trial investigating the protective effects of house screening against mosquito house entry, a multi-factorial risk factor analysis study was used to identify factors influencing house entry by culicines of nuisance biting and medical importance. These factors were house location, architecture, human occupancy and their mosquito control activities, and the number and type of domestic animals within the compound.
View Article and Find Full Text PDF