Publications by authors named "Philippa Payne"

The application of green chemistry is critical for cultivating environmental responsibility and sustainable practices in pharmaceutical manufacturing. Process mass intensity (PMI) is a key metric that quantifies the resource efficiency of a manufacturing process, but determining what constitutes a successful PMI of a specific molecule is challenging. A recent approach correlated molecular features to a crowdsourced definition of molecular complexity to determine PMI targets.

View Article and Find Full Text PDF

Small molecule therapeutics represent the majority of the FDA-approved drugs. Yet, many attractive targets are poorly tractable by small molecules, generating a need for new therapeutic modalities. Due to their biocompatibility profile and structural versatility, peptide-based therapeutics are a possible solution.

View Article and Find Full Text PDF

The selective (and controllable) modification of complex molecules with disparate functional groups (for example, natural products) is a long-standing challenge that has been addressed using catalysts tuned to perform singular transformations (for example, C-H hydroxylation). A method whereby reactions with diverse functional groups within a single natural product are feasible depending on which catalyst or reagent is chosen would widen the possible structures one could obtain. Fluoroarylborane catalysts can heterolytically split Si-H bonds to yield an oxophilic silylium (RSi) equivalent along with a reducing (H) equivalent.

View Article and Find Full Text PDF

The syntheses of a series of tris(amidate) mono(amido) titanium and zirconium complexes are reported. The binding motif of the amidate ligand has been determined to depend on the size of the metal centre for these sterically demanding N,O-chelating ligands; the larger zirconium metal centre supports three κ(2)-(N,O) bound amidate ligands while the titanium analogue has one ligand bound in a κ(1)-(O) fashion to alleviate steric strain. Reactivity studies indicate that, despite high steric crowding about the tris(amidate) mono(amido) zirconium metal centre, transamination of the reactive dimethylamido ligand can be achieved using aniline.

View Article and Find Full Text PDF

Unprotected secondary amines are directly alkylated by C-H functionalization adjacent to nitrogen, thereby opening new routes toward the synthesis of α- and β-alkylated N-heterocycles. α-Alkylated piperidine, piperazine, and azepane products are prepared from heterocycles and alkenes in an atom-economic reaction with excellent regio- and diastereoselectivity. β-Alkylated N-heterocycles are synthesized via a scalable one-pot alkylation/cyclization procedure generating 3-methylated azetidines, pyrrolidines, and piperidines.

View Article and Find Full Text PDF

A broadly applicable group-4-based precatalyst for the hydroamination of primary and secondary amines was developed. Screening experiments involving a series of amide and urea proligands led to the discovery of a tethered bis(ureate) zirconium complex with unprecedented reactivity in the intermolecular hydroamination of alkynes and the intramolecular hydroamination of alkenes. This catalyst system is effective with primary and secondary amines, 1,2-disubstituted alkenes, and heteroatom-containing functional groups, including ethers, silanes, amines, and heteroaromatics.

View Article and Find Full Text PDF

Selective alpha-C-H activation results in the synthesis of the first bridging metallaaziridine complex for the catalytic alpha-alkylation of primary amines. Reaction development led to the preparation of new Zr 2-pyridonate complexes for this useful transformation. No nitrogen protecting groups are required for this reaction, which is capable of assembling quaternary chiral centers alpha to nitrogen.

View Article and Find Full Text PDF