Pulsed Field Ablation (PFA) is a new ablation method being rapidly adopted for treatment of atrial fibrillation, which shows advantages in safety and efficiency over radiofrequency and cryo-ablation. In this study, we used an in vivo swine model (10 healthy and 5 with chronic myocardial infarct) for ventricular PFA, collecting intracardiac electrograms, electro-anatomical maps, native T1-weighted and late gadolinium enhancement MRI, gross pathology, and histology. We used 1000-1500 V pulses, with 1-16 pulse trains to vary PFA dose.
View Article and Find Full Text PDFObjective: Investigate the capacity of MRI to evaluate efficacy of radiofrequency (RF) ablations delivered to MRI-defined arrhythmogenic substrates.
Methods: Baseline MRI was performed at 3 T including 3D LGE in a swine model of chronic myocardial infarct (N = 8). MRI-derived maps of scar and heterogeneous tissue channels (HTCs) were generated using ADAS 3D.
Objective: Radiofrequency (RF) energy delivered to cardiac tissue produces a core ablation lesion with surrounding edema, the latter of which has been implicated in acute procedural failure of Ventricular Tachycardia (VT) ablation and late arrhythmia recurrence. This study sought to investigate the electrophysiological characteristics of acute RF lesions in the left ventricle (LV) visualized with native-contrast Magnetic Resonance Imaging (MRI).
Methods: An MR-guided electrophysiology system was used to deliver RF ablation in the LV of 8 swine (9 RF lesions in total), then perform MRI and electroanatomic mapping.
Purpose: To develop an approach for automated quantification of myocardial infarct heterogeneity in late gadolinium enhancement (LGE) cardiac MRI.
Methods: We acquired 2D short-axis cine and 3D LGE in 10 pigs with myocardial infarct. The 2D cine myocardium was segmented and registered to the LGE images.
Background: Radiofrequency (RF) ablation has become a mainstay of treatment for ventricular tachycardia, yet adequate lesion formation remains challenging. This study aims to comprehensively describe the composition and evolution of acute left ventricular (LV) lesions using native-contrast cardiovascular magnetic resonance (CMR) during CMR-guided ablation procedures.
Methods: RF ablation was performed using an actively-tracked CMR-enabled catheter guided into the LV of 12 healthy swine to create 14 RF ablation lesions.
Goal: The purpose of this study is to improve the accuracy of interventional catheter guidance during intracardiac procedures. Specifically, the use of preprocedural magnetic resonance roadmap images for interventional guidance has limited anatomical accuracy due to intraprocedural respiratory motion of the heart. Therefore, we propose to build a novel respiratory motion model to compensate for this motion-induced error during magnetic resonance imaging (MRI)-guided procedures.
View Article and Find Full Text PDF