The molecular and cellular basis of health in human tendons remains poorly understood. Among human tendons, hamstring tendon has markedly low pathology and can provide a prototypic healthy tendon reference. The aim of this study was to determine the transcriptomes and location of all cell types in healthy hamstring tendon.
View Article and Find Full Text PDFGas-loaded nanobubbles have potential as a method of oxygen delivery to increase tumour oxygenation and therapeutically alleviate tumour hypoxia. However, the mechanism(s) whereby oxygen-loaded nanobubbles increase tumour oxygenation are unknown; with their calculated oxygen-carrying capacity being insufficient to explain this effect. Intra-tumoural hypoxia is a prime therapeutic target, at least partly due to hypoxia-dependent stimulation of the formation and function of bone-resorbing osteoclasts which establish metastatic cells in bone.
View Article and Find Full Text PDFIntroduction: For decades, functional primary human osteocyte cultures have been crucially needed for understanding their role in bone anabolic processes and in endocrine phosphate regulation via the bone-kidney axis. Mature osteocyte proteins (sclerostin, DMP1, Phex and FGF23) play a key role in various systemic diseases and are targeted by successful bone anabolic drugs (anti-sclerostin antibody and teriparatide (PTH1-34)). However, cell lines available to study osteocytes produce very little sclerostin and low levels of mature osteocyte markers.
View Article and Find Full Text PDFOsteoclasts regulate skeletal development but also drive pathological osteolysis, making them prime therapeutic targets. Osteoclast research is limited by the heterogeneity of osteoclast populations generated in vitro, where the mixture of undifferentiated monocytes, binuclear pre-osteoclasts and multinucleated osteoclasts has by necessity been considered a single osteoclast population. This study describes the differentiation of primary human CD14+ monocyte-derived osteoclasts in 3D collagen gels.
View Article and Find Full Text PDFThe link between bone and blood vessels is regulated by hypoxia and the hypoxia-inducible transcription factor, HIF, which drives both osteogenesis and angiogenesis. The recent clinical approval of PHD enzyme inhibitors, which stabilize HIF protein, introduces the potential for a new clinical strategy to treat osteolytic conditions such as osteoporosis, osteonecrosis, and skeletal fracture and nonunion. However, bone-resorbing osteoclasts also play a central role in bone remodeling and pathological osteolysis, and HIF promotes osteoclast activation and bone loss in vitro.
View Article and Find Full Text PDFCurr Protoc Stem Cell Biol
February 2019
We have developed an organotypic culture system that allows the production of bone tissue features on a centimeter scale. A composite, calcium phosphate-strained fibrin gel system is able to organize itself in the presence of osteoblastic cells, creating basic hierarchical units as seen in vivo, and can be modified to produce a range of other tissues that require such directional structuring. Constructs evolve over time into multi-compositional structures containing a high mineral content and terminally differentiated, osteocyte-like cells.
View Article and Find Full Text PDFBackground: Achilles tendon injuries give rise to substantial long-lasting morbidity and pose considerable challenges for clinicians and patients during the lengthy healing period. Current treatment strategies struggle to curb the burden of this injury on health systems and society due to lengthy rehabilitation, work absence and reinjury risk. Platelet-rich plasma (PRP) is an autologous preparation that has been shown to improve the mechanobiological properties of tendons in laboratory and animal studies.
View Article and Find Full Text PDFOsteogenic-angiogenic coupling is promoted by the hypoxia-inducible factor 1-alpha (HIF-1α) transcription factor, provoking interest in HIF activation as a therapeutic strategy to improve osteoblast mineralization and treat pathological osteolysis. However, HIF also enhances the bone-resorbing activity of mature osteoclasts. It is therefore essential to determine the full effect(s) of HIF on both the formation and the bone-resorbing function of osteoclasts in order to understand how they might respond to such a strategy.
View Article and Find Full Text PDFBackground: Osteoarthritis (OA) is a progressively degenerative joint disease influenced by structural and metabolic factors. There is growing evidence that subchondral bone is involved in both symptomatic and structural progression in OA. The Wnt pathway has been implicated in the progression of OA but the expression and function of the Wnt inhibitors, Dikkopf (DKK-1) and sclerostin (SOST), are unclear.
View Article and Find Full Text PDFDespite differences in the phamacokinetics of 25-hydroxycholecalciferol (25(OH)D3) and 25-hydroxyergocalciferol (25(OH)D2) in man, the effects of these and their 1α-hydroxylated forms (1,25(OH)2D3 and 1,25(OH)2D2) on cellular activity of vitamin D-responsive cells have hardly been compared. We studied differences in the effects of these metabolites on cell number, gene transcription, protein expression and mineralisation of cultured human bone marrow-derived stromal cells (hBMSC) and rapidly mineralising mouse 2T3 osteoblasts. 50-1000 nM 25(OH) and 0.
View Article and Find Full Text PDFArticular cartilage exhibits complex mechano-electrochemical behaviour due to its anisotropy, inhomogeneity and material non-linearity. In this work, the thickness and radial dependence of cartilage properties are incorporated into a 3D mechano-electrochemical model to explore the relevance of heterogeneity in the behaviour of the tissue. The model considers four essential phenomena: (i) osmotic pressure, (ii) convective and diffusive processes, (iii) chemical expansion and (iv) three-dimensional through-the-thickness heterogeneity of the tissue.
View Article and Find Full Text PDFFluorescence recovery after photobleaching (FRAP) is a microscopy-based technique to study the movement of fluorescent molecules inside a cell. Although initially developed to investigate intracellular mobility, FRAP can be also used to measure intercellular dynamics. This chapter describes how to perform FRAP experiment to study gap junctional communication in living cells.
View Article and Find Full Text PDFBiochem Biophys Res Commun
June 2015
The FOXO family of forkhead transcription factors have a pivotal role in determining cell fate in response to oxidative stress. FOXO activity can either promote cell survival or induce cell death. Increased FOXO-mediated cell death has been implicated in the pathogenesis of degenerative diseases affecting musculoskeletal tissues.
View Article and Find Full Text PDFStatins are among the most widely prescribed drugs worldwide. Numerous studies have shown their beneficial effects in prevention of cardiovascular disease through cholesterol-lowering and anti-atherosclerotic properties. Although some statin patients may experience muscle-related symptoms, severe side effects of statin therapy are rare, primarily due to extensive first-pass metabolism in the liver.
View Article and Find Full Text PDFGrowth and differentiation of osteoblasts are often studied in cell cultures. In vivo, however, osteoblasts are embedded within a complex three-dimensional (3D) microenvironment, which bears little relation to standard culture flasks. Our study characterizes osteoblast-like cells cultured in 3D collagen gels and compares them with cells in two-dimensional (2D) cultures.
View Article and Find Full Text PDFGap junction-mediated intercellular communication influences a variety of cellular activities. In tendons, gap junctions modulate collagen production, are involved in strain-induced cell death, and are involved in the response to mechanical stimulation. The aim of the present study was to investigate gap junction-mediated intercellular communication in healthy human tendon-derived cells using fluorescence recovery after photobleaching (FRAP).
View Article and Find Full Text PDFUnlabelled: Cellular senescence is an irreversible side effect of some pharmaceuticals which can contribute to tissue degeneration.
Objective: To determine whether pharmaceutical glucocorticoids induce senescence in tenocytes.
Methods: Features of senescence (β-galactosidase activity at pH 6 (SA-β-gal) and active mammalian/mechanistic target of rapamycin (mTOR) in cell cycle arrest) as well as the activity of the two main pathways leading to cell senescence were examined in glucocorticoid-treated primary human tenocytes.
Degenerate shoulder tendons display evidence of hypoxia. However tendons are relatively avascular and not considered to have high oxygen requirements and the vulnerability of tendon cells to hypoxia is unclear. Cultured human tenocytes were exposed to hypoxia and the cellular response detected using QPCR, Western blotting, viability, and ELISA assays.
View Article and Find Full Text PDFBackground: Ruptured tendons heal very slowly and complete recovery from injury is uncertain. Platelet-rich plasma (PRP), a rich source of growth factors, is currently being widely tested as a soft tissue healing agent and may accelerate tendon repair. The authors assessed the ability of PRP to prevent in vitro adverse effects of 2 drugs commonly linked to tendon rupture and tendinopathy, glucocorticoids and fluoroquinolone antibiotics.
View Article and Find Full Text PDFAntiinflammatory glucocorticoid (GC) injections are extensively used to treat painful tendons. However, GC cause severe tissue wasting in other collagen-producing tissues such as skin and bone. The objective of this study was to determine the effects of GC on tenocytes and to explore strategies to protect against unwanted side effects of GC treatment.
View Article and Find Full Text PDFAnteromedial gonarthrosis (AMG) displays a well recognised pattern of cartilage damage on the medial tibial plateau. Anteriorly there is a full thickness cartilage defect, with transition to a partial thickness defect, becoming full thickness cartilage in the posterior third of the tibial plateau. The retained posterior cartilage is macroscopically normal.
View Article and Find Full Text PDFThe bone morphogenetic protein 5 (BMP5) participates in skeletal development but its direct effects on the function of growth plate chondrocytes during chondrogenesis have not been explored. We have investigated the signaling pathways activated by BMP5 and its effect on chondrogenic differentiation in the ATDC5 growth plate chondrocyte model. BMP5 transiently activated p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase signaling after 10 days of differentiation; sustained Smad and p38 MAPK signaling were seen after 15 days differentiation.
View Article and Find Full Text PDFIntroduction: Osteoblasts depend on a constant supply of prosurvival signals from their microenvironment. When trophic factors become limited by injury or disease, cells undergo apoptosis. This study establishes the regulation and function of Bim, Bak, and Bax in this response.
View Article and Find Full Text PDFTumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a tumor necrosis factor superfamily member, targets death receptors and selectively kills malignant cells while leaving normal cells unaffected. However, unlike most cancers, many osteosarcomas are resistant to TRAIL. To investigate this resistance, we characterized the response of MG-63 osteosarcoma cells and hPOB-tert osteoblast-like cells to TRAIL and agonist antibodies to death receptor 4 (DR4) and death receptor 5 (DR5).
View Article and Find Full Text PDFThe bisphosphonates (BPs) are well established as the treatments of choice for disorders of excessive bone resorption, including Paget's disease of bone, myeloma and bone metastases, and osteoporosis. There is considerable new knowledge about how BPs work. Their classical pharmacological effects appear to result from two key properties: their affinity for bone mineral and their inhibitory effects on osteoclasts.
View Article and Find Full Text PDF