Publications by authors named "Philipp Wein"

The endosymbiosis between the pathogenic fungus Rhizopus microsporus and the toxin-producing bacterium Mycetohabitans rhizoxinica represents a unique example of host control by an endosymbiont. Fungal sporulation strictly depends on the presence of endosymbionts as well as bacterially produced secondary metabolites. However, an influence of primary metabolites on host control remained unexplored.

View Article and Find Full Text PDF

Interactions between fungi and bacteria are critically important in ecology, medicine, and biotechnology. In this study, we shed light on factors that promote the persistence of a toxin-producing, phytopathogenic symbiosis that causes severe crop losses in Asia. We present an unprecedented case where bacterially produced transcription activator-like (TAL) effectors are key to maintaining a stable endosymbiosis.

View Article and Find Full Text PDF

The soft rot pathogen causes devastating damage to button mushrooms (), one of the most cultivated and commercially relevant mushrooms. We previously discovered that this pathogen releases the membrane-disrupting lipopeptide jagaricin. This bacterial toxin, however, could not solely explain the rapid decay of mushroom fruiting bodies, indicating that implements a more sophisticated infection strategy.

View Article and Find Full Text PDF

As an endosymbiont of the ecologically and medically relevant fungus Rhizopus microsporus, the toxin-producing bacterium Mycetohabitans rhizoxinica faces myriad challenges, such as evading the host's defense mechanisms. However, the bacterial effector(s) that facilitate the remarkable ability of M. rhizoxinica to freely migrate within fungal hyphae have thus far remained unknown.

View Article and Find Full Text PDF

Natural products play a vital role for intermicrobial interactions. In the basidiomycete arena an important representative is variegatic acid, a lactone natural product pigment whose ecological relevance stems from both inhibiting bacterial swarming and from indirect participation in breakdown of organic matter by brown-rotting fungi. Previous work showed that the presence of bacteria stimulates variegatic acid production.

View Article and Find Full Text PDF