Publications by authors named "Philipp Walloch"

Malaria parasites in the blood stage express a single transmembrane transport protein for the release of the glycolytic end product l-lactate/H from the cell. This transporter is a member of the strictly microbial formate-nitrite transporter (FNT) family and a novel putative drug target. Small, drug-like FNT inhibitors potently block lactate transport and kill Plasmodium falciparum parasites in culture.

View Article and Find Full Text PDF

The spectrum of putative and experimentally shown permeants of cellular water and solute channels of the ubiquitous aquaporin family is still increasing. Virtually all AQP substrates, e.g.

View Article and Find Full Text PDF

The protozoan parasite Plasmodium falciparum causes the most severe and prevailing form of malaria in sub-Saharan Africa. Previously, we identified the plasmodial lactate transporter, PfFNT, a member of the microbial formate-nitrite transporter family, as a novel antimalarial drug target. With the pentafluoro-3-hydroxy-pent-2-en-1-ones, we discovered PfFNT inhibitors that potently kill P.

View Article and Find Full Text PDF

The spreading of malaria parasites, , with resistance to all known drugs calls for novel classes of inhibitors with new modes of action. Recently, we discovered and validated the plasmodial l-lactate transporter, PfFNT, as a novel antimalarial drug target. However, treatment of parasites with a screening hit from the malaria box compound collection, MMV007839, gave rise to a PfFNT Gly107Ser resistance mutation decreasing inhibitor affinity by 2 orders of magnitude.

View Article and Find Full Text PDF