Publications by authors named "Philipp Steinmetz"

The sensor kinase DcuS of perceives extracellular fumarate by a periplasmic PAS sensor domain. Transmembrane (TM) helix TM2, present as TM2-TM2' homo-dimer, transmits fumarate activation in a piston-slide across the membrane. The second TM helix of DcuS, TM1, is known to lack piston movement.

View Article and Find Full Text PDF

Transmembrane (TM) signaling is a key process of membrane-bound sensor kinases. The C-dicarboxylate (fumarate) responsive sensor kinase DcuS of Escherichia coli is anchored by TM helices TM1 and TM2 in the membrane. Signal transmission across the membrane relies on the piston-type movement of the periplasmic part of TM2.

View Article and Find Full Text PDF

DcuA of Escherichia coli is known as an alternative C -dicarboxylate transporter for the main anaerobic C -dicarboxylate transporter DcuB. Since dcuA is expressed constitutively under aerobic and anaerobic conditions, DcuA was suggested to serve aerobically as a backup for the aerobic (DctA) transporter, or for the anabolic uptake of C -dicarboxylates. In this work, it is shown that DcuA is required for aerobic growth with L-aspartate as a nitrogen source, whereas for growth with L-aspartate as a carbon source, DctA was needed.

View Article and Find Full Text PDF

Cement leakage is a serious adverse event potentially occurring during vertebroplasty. Pre-operative in-silico planning of the cement filling process can help reducing complication rates related to leakage. This requires a better understanding of the cement flow along the whole injection path.

View Article and Find Full Text PDF

Background: One of the most serious adverse events potentially occurring during vertebroplasty is cement leakage. Associated risks for the patient could be reduced if cement filling is preoperatively planned. This requires a better understanding of cement flow behaviour.

View Article and Find Full Text PDF

The C4-dicarboxylate responsive sensor kinase DcuS of the DcuS/DcuR two-component system of E. coli is membrane-bound and reveals a polar localization. DcuS uses the C4-dicarboxylate transporter DctA as a co-regulator forming DctA/DcuS sensor units.

View Article and Find Full Text PDF

The C4-dicarboxylate responsiveness of the sensor kinase DcuS is only provided in concert with C4-dicarboxylate transporters DctA or DcuB. The individual roles of DctA and DcuS for the function of the DctA/DcuS sensor complex were analysed. (i) Variant DctA(S380D) in the C4-dicarboxylate site of DctA conferred C4-dicarboxylate sensitivity to DcuS in the DctA/DcuS complex, but was deficient for transport and for growth on C4-dicarboxylates.

View Article and Find Full Text PDF

Escherichia coli contains a versatile respiratory chain that oxidizes 10 different electron donor substrates and transfers the electrons to terminal reductases or oxidases for the reduction of six different electron acceptors. Salmonella is able to use two more electron acceptors. The variation is further increased by the presence of isoenzymes for some substrates.

View Article and Find Full Text PDF

The aerobic Escherichia coli C(4) -dicarboxylate transporter DctA and the anaerobic fumarate/succinate antiporter DcuB function as obligate co-sensors of the fumarate responsive sensor kinase DcuS under aerobic or anaerobic conditions respectively. Overproduction under anaerobic conditions allowed DctA to replace DcuB in co-sensing, indicating their functional equivalence in this capacity. In vivo interaction studies between DctA and DcuS using FRET or a bacterial two-hybrid system (BACTH) demonstrated their interaction.

View Article and Find Full Text PDF