Hydrogenation of unsaturated bonds is a key step in both the fine and petrochemical industries. Homogeneous and heterogeneous catalysts are historically based on noble group 9 and 10 metals. Increasing awareness of sustainability drives the replacement of costly, and often harmful, precious metals by abundant 3d-metals or even main group metals.
View Article and Find Full Text PDFThe chiral building block (R)-(+)-2,2'-diamino-1,1'-binaphthyl, (R)-BINAM, which is often used as backbone in privileged enantioselective catalysts, was converted to a series of N-substituted proligands R1-H2 (R = CH2tBu, C(H)Ph2, PPh2, dibenzosuberane, 8-quinoline). After double deprotonation with strong Mg or Ca bases, a series of alkaline earth (Ae) metal catalysts R1-Ae·(THF)n was obtained. Crystal structures of these C2-symmetric catalysts have been analyzed by quadrant models which show that the ligands with C(H)Ph2, dibenzosuberane and 8-quinoline substituents should give the best steric discrimination for the enantioselective intramolecular alkene hydroamination (IAH) of the aminoalkenes H2C[double bond, length as m-dash]CHCH2CR'2CH2NH2 (CR'2 = CPh2, CCy or CMe2).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
February 2021
Ba metal was activated by evaporation and cocondensation with heptane. This black powder is a highly active hydrogenation catalyst for the reduction of a variety of unactivated (non-conjugated) mono-, di- and tri-substituted alkenes, tetraphenylethylene, benzene, a number of polycyclic aromatic hydrocarbons, aldimines, ketimines and various pyridines. The performance of metallic Ba in hydrogenation catalysis tops that of the hitherto most active molecular group 2 metal catalysts.
View Article and Find Full Text PDFDouble deprotonation of the diamine 1,1'-(tBuCH NH)-ferrocene (1-H ) by alkaline-earth (Ae) or Eu metal reagents gave the complexes 1-Ae (Ae=Mg, Ca, Sr, Ba) and 1-Eu. 1-Mg crystallized as a monomer while the heavier complexes crystallized as dimers. The Fe⋅⋅⋅Mg distance in 1-Mg is too long for a bonding interaction, but short Fe⋅⋅⋅Ae distances in 1-Ca, 1-Sr, and 1-Ba clearly support intramolecular Fe⋅⋅⋅Ae bonding.
View Article and Find Full Text PDF