Distributions of electron waiting times have been measured in several recent experiments and have been shown to provide complementary information compared with what can be learned from the electric current fluctuations. Existing theories, however, are restricted to either weakly coupled nanostructures or phase-coherent transport in mesoscopic conductors. Here, we consider an interacting quantum dot and develop a real-time diagrammatic theory of waiting time distributions that can treat the interesting regime, in which both interaction effects and higher-order tunneling processes are important.
View Article and Find Full Text PDFAuger recombination is a nonradiative process, where the recombination energy of an electron-hole pair is transferred to a third charge carrier. It is a common effect in colloidal quantum dots that quenches the radiative emission with an Auger recombination time below nanoseconds. In self-assembled QDs, the Auger recombination has been observed with a much longer recombination time on the order of microseconds.
View Article and Find Full Text PDF