Publications by authors named "Philipp Rosenberger"

The photoelectric effect is not truly instantaneous but exhibits attosecond delays that can reveal complex molecular dynamics. Sub-femtosecond-duration light pulses provide the requisite tools to resolve the dynamics of photoionization. Accordingly, the past decade has produced a large volume of work on photoionization delays following single-photon absorption of an extreme ultraviolet photon.

View Article and Find Full Text PDF
Article Synopsis
  • Surface charges are crucial in determining the catalytic properties of nanomaterials, but studying their dynamics at the nanoscale is difficult due to varying length and time scales.
  • This study utilizes reaction nanoscopy to visualize charge dynamics on individual SiO nanoparticles with femtosecond and nanometer resolution, revealing how surface charges redistribute over time.
  • The research enhances our understanding of how surface charges affect chemical bonding on a nanoscale level, which could have significant implications for renewable energy and advanced healthcare innovations.*
View Article and Find Full Text PDF

Radar sensors were among the first perceptual sensors used for automated driving. Although several other technologies such as lidar, camera, and ultrasonic sensors are available, radar sensors have maintained and will continue to maintain their importance due to their reliability in adverse weather conditions. Virtual methods are being developed for verification and validation of automated driving functions to reduce the time and cost of testing.

View Article and Find Full Text PDF

Safety validation of automated driving functions is a major challenge that is partly tackled by means of simulation-based testing. The virtual validation approach always entails the modeling of automotive perception sensors and their environment. In the real world, these sensors are exposed to adverse influences by environmental conditions such as rain, fog, snow, etc.

View Article and Find Full Text PDF

Abstract: We investigate the strong-field ion emission from the surface of isolated silica nanoparticles aerosolized from an alcoholic solution, and demonstrate the applicability of the recently reported near-field imaging at 720 nm [Rupp et al., Nat. Comm.

View Article and Find Full Text PDF

Photoconductive field sampling enables petahertz-domain optoelectronic applications that advance our understanding of light-matter interaction. Despite the growing importance of ultrafast photoconductive measurements, a rigorous model for connecting the microscopic electron dynamics to the macroscopic external signal is lacking. This has caused conflicting interpretations about the origin of macroscopic currents.

View Article and Find Full Text PDF

In quantum systems, coherent superpositions of electronic states evolve on ultrafast time scales (few femtoseconds to attoseconds; 1 attosecond = 0.001 femtoseconds = 10 seconds), leading to a time-dependent charge density. Here we performed time-resolved measurements using attosecond soft x-ray pulses produced by a free-electron laser, to track the evolution of a coherent core-hole excitation in nitric oxide.

View Article and Find Full Text PDF
Article Synopsis
  • The trihydrogen cation is crucial in interstellar chemistry for forming water and complex organic molecules essential for life.
  • Recent research has shifted from using organic materials to generating the trihydrogen cation from just water in a controlled environment using silica nanoparticles and femtosecond laser pulses.
  • This study suggests that natural environments in space, similar to the lab setup, could facilitate the formation of complex molecules through interactions with cosmic rays and solar wind.
View Article and Find Full Text PDF

The recent demonstration of isolated attosecond pulses from an X-ray free-electron laser (XFEL) opens the possibility for probing ultrafast electron dynamics at X-ray wavelengths. An established experimental method for probing ultrafast dynamics is X-ray transient absorption spectroscopy, where the X-ray absorption spectrum is measured by scanning the central photon energy and recording the resultant photoproducts. The spectral bandwidth inherent to attosecond pulses is wide compared to the resonant features typically probed, which generally precludes the application of this technique in the attosecond regime.

View Article and Find Full Text PDF

Nanoparticles offer unique properties as photocatalysts with large surface areas. Under irradiation with light, the associated near-fields can induce, enhance, and control molecular adsorbate reactions on the nanoscale. So far, however, there is no simple method available to spatially resolve the near-field induced reaction yield on the surface of nanoparticles.

View Article and Find Full Text PDF