Publications by authors named "Philipp Rohne"

The spectral composition of light is an important factor for the metabolism of photosynthetic organisms. Several blue light-regulated metabolic processes have already been identified in the industrially relevant microalga Monoraphidium braunii. However, little is known about the spectral impact on this species' growth, fatty acid (FA), and pigment composition.

View Article and Find Full Text PDF

Blue-green light is known to maximize the degree of fatty acid (FA) unsaturation in microalgae. However, knowledge on the particular waveband responsible for this stimulation of FA desaturation and its impact on the pigment composition in microalgae remains limited. In this study, Acutodesmus obliquus was cultivated for 96 h at 15°C with different light spectra (380-700 nm, 470-700 nm, 520-700 nm, 600-700 nm, and dark controls).

View Article and Find Full Text PDF

The use of nanocarriers as drug delivery vehicles brings them into contact with blood plasma proteins. Polymeric nanocarriers require some sort of surfactant to ensure colloidal stability. Formation of the protein corona is therefore determined not only by the intrinsic properties of the nanocarrier itself but also by the accompanying surfactant.

View Article and Find Full Text PDF

Necrosis is a form of cell death that is detrimental to the affected tissue because the cell ruptures and releases its content (reactive oxygen species among others) into the extracellular space. Clusterin (CLU), a cytoprotective extracellular chaperone has been shown to be upregulated in the face of necrosis. We here show that in addition to CLU upregulation, necrotic cell lysates induce JNK/SAPK signaling, the IRE1α branch of the unfolded protein response (UPR), the MAPK/ERK1/2, and the mTOR signaling pathways and results in an enhanced proliferation of the vital surrounding cells.

View Article and Find Full Text PDF

The multifaceted protein clusterin (CLU) has been challenging researchers for more than 35 years. The characterization of CLU as a molecular chaperone was one of the major breakthroughs in CLU research. Today, secretory clusterin (sCLU), also known as apolipoprotein J (apoJ), is considered one of the most important extracellular chaperones ever found.

View Article and Find Full Text PDF

Background/aims: Clusterin (CLU), also known as Apolipoprotein J (ApoJ) is a highly glycosylated extracellular chaperone. In humans it is expressed from a broad spectrum of tissues and related to a plethora of physiological and pathophysiological processes, such as Alzheimer's disease, atherosclerosis and cancer. In its dominant form it is expressed as a secretory protein (secreted CLU, sCLU).

View Article and Find Full Text PDF

Clusterin, also known as apolipoprotein J, is expressed from a variety of tissues and implicated in pathological disorders such as neurodegenerative diseases, ischemia and cancer. In contrast to secretory clusterin (sCLU), which acts as an extracellular chaperone, the synthesis, subcellular localization and function(s) of intracellular CLU isoforms is currently a matter of intense discussion. By investigating human CLU mRNAs we here unravel mechanisms leading to the synthesis of distinct CLU protein isoforms and analyze their subcellular localization and their impact on apoptosis and on NF-κB-activity.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiontv8lgnd0i86mnirll8gs858currivc2a): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once