Adsorption-based processes are showing substantial potential for carbon capture. Due to the vast space of potential solid adsorbents and their influence on the process performance, the choice of the material is not trivial but requires systematic approaches. In particular, the material choice should be based on the performance of the resulting process.
View Article and Find Full Text PDFPredicting thermodynamic equilibrium properties is essential to develop chemical and energy conversion processes in the absence of experimental data. For the modeling of thermodynamic properties, statistical associating fluid theory (SAFT)-based equations of state, such as perturbed-chain polar (PCP)-SAFT, have been proven powerful and found broad application. The PCP-SAFT parameters can be predicted by group-contribution (GC) methods.
View Article and Find Full Text PDFAdsorption is at the heart of many processes from gas separation to cooling. The design of adsorption-based processes requires equilibrium adsorption properties. However, data for adsorption equilibria are limited, and therefore, a model is desirable that uses as little data as possible for its parametrization, while allowing for data interpolation or even extrapolation.
View Article and Find Full Text PDFMolecular-based equations of state for describing the thermodynamics of chain molecules are often based on mean-field like arguments that reduce the problem of describing the interactions between chains to a simpler one involving only nonbonded monomers. While for dense liquids such arguments are known to work well, at low density they are typically less appropriate due to an incomplete description of the effect of chain connectivity on the local environment of the chains' monomer segments. To address this issue, we develop three semi-empirical approaches that significantly improve the thermodynamic description of chain molecules at low density.
View Article and Find Full Text PDFModern equations of state for real nonspherical molecules are often based on Wertheim's first-order thermodynamic perturbation theory (TPT1). A major drawback of TPT1 is that it assumes tangentially bonded spheres. In this work, we develop a Helmholtz energy functional for systems comprising hard heterosegmented chains with arbitrary bond lengths.
View Article and Find Full Text PDFThe curvature dependence of interfacial properties has been discussed extensively over the last decades. After Tolman published his work on the effect of droplet size on surface tension, where he introduced the interfacial property now known as Tolman length, several studies were performed with varying results. In recent years, however, some consensus has been reached about the sign and magnitude of the Tolman length of simple model fluids.
View Article and Find Full Text PDF