Publications by authors named "Philipp Otter"

Over the past few decades, the increase in dependency on healthcare facilities has led to the generation of large quantities of hospital wastewater (HWW) rich in chemical oxygen demand (COD), total suspended solids (TSS), ammonia, recalcitrant pharmaceutically active compounds (PhACs), and other disease-causing microorganisms. Conventional treatment methods often cannot effectively remove the PhACs present in wastewater. Hence, hybrid processes comprising of biological treatment and advanced oxidation processes have been used recently to treat complex wastewater.

View Article and Find Full Text PDF

Reliable data on the economic feasibility of small-scale rural water supply systems are insufficient, which hampers the allocation of funds to construct them, even as the need for their construction increases. To address this gap, three newly constructed water supply systems with water points in Nepal, Egypt, and Tanzania were accompanied by the authors throughout the planning and implementation phases and up to several years of operation. This study presents an analysis of their economic feasibility and suggests important factors for successful water supply system implementation at other rural locations.

View Article and Find Full Text PDF

Increasing water scarcity is of growing concern in Europe, especially in Mediterranean countries along coastlines. Wastewater reuse reduces water stress, but often requires the absence of pathogen indicators and the application of chlorine to assure residual disinfection. However, the effluent qualities of typical Wastewater Treatment Plants (WWTP) show immense chlorine demands.

View Article and Find Full Text PDF

Arsenic contamination in drinking water resources is of major concern in the Ganga delta plains of West Bengal in India and Bangladesh. Here, several laboratory and field studies on arsenic removal from drinking water resources were conducted in the past and the application of strong-oxidant-induced co-precipitation of arsenic on iron hydroxides is still considered as the most promising mechanism. This paper suggests an autonomous, solar driven arsenic removal setting and presents the findings of a long term field test conducted in West Bengal.

View Article and Find Full Text PDF