The influence of depth and associated gradients in light, nutrients and plankton on the ecological organization of tropical reef communities was first described over six decades ago but remains untested across broad geographies. During this time humans have become the dominant driver of planetary change, requiring that we revisit historic ecological paradigms to ensure they capture the dynamics of contemporary ecological systems. Analysing >5,500 in-water reef fish surveys between 0 and 30 m depth on reef slopes of 35 islands across the Pacific, we assess whether a depth gradient consistently predicts variation in reef fish biomass.
View Article and Find Full Text PDFMost marine animals have a pelagic larval phase that develops in the coastal or open ocean. The fate of larvae has profound effects on replenishment of marine populations that are critical for human and ecosystem health. Larval ecology is expected to be tightly coupled to oceanic features, but for most taxa we know little about the interactions between larvae and the pelagic environment.
View Article and Find Full Text PDFLife for many of the world's marine fish begins at the ocean surface. Ocean conditions dictate food availability and govern survivorship, yet little is known about the habitat preferences of larval fish during this highly vulnerable life-history stage. Here we show that surface slicks, a ubiquitous coastal ocean convergence feature, are important nurseries for larval fish from many ocean habitats at ecosystem scales.
View Article and Find Full Text PDFWolf notes are generally undesirable sounds that occur in string instruments, particularly in cellos. State-of-the-art passive wolf note eliminators affect the whole cello sound and can become ineffective when environmental conditions and, therefore, the cello's structural properties change. In this paper, an approach is presented that uses smart materials to eliminate the wolf note with little effects to the cello's sound.
View Article and Find Full Text PDFFisheries management is most effective when based on scientific estimates of sustainable fishing rates. While some simple approaches allow estimation of harvest limits, more data-intensive stock assessments are generally required to evaluate the stock's biomass and fishing rates relative to sustainable levels. Here we evaluate how stock characteristics relate to the rate of new assessments in the United States.
View Article and Find Full Text PDFMaterials (Basel)
December 2017
Lithography-based additive manufacturing was introduced in the 1980s, and is still the method of choice for printing accurate plastic parts with high surface quality. Recent progress in this field has made tough photopolymer resins and cheap LED light engines available. This study presents the influence of photoinitiator selection and post-processing on the thermomechanical properties of various tough photopolymers.
View Article and Find Full Text PDFThe mutualistic endosymbiosis between cnidarians and dinoflagellates is mediated by complex inter-partner signaling events, where the host cnidarian innate immune system plays a crucial role in recognition and regulation of symbionts. To date, little is known about the diversity of thrombospondin-type-1 repeat (TSR) domain proteins in basal metazoans or their potential role in regulation of cnidarian-dinoflagellate mutualisms. We reveal a large and diverse repertoire of TSR proteins in seven anthozoan species, and show that in the model sea anemone the TSR domain promotes colonization of the host by the symbiotic dinoflagellate .
View Article and Find Full Text PDFQuantitative analysis of stable isotopes (SI) and, more recently, fatty acid profiles (FAP) are useful and complementary tools for estimating the relative contribution of different prey items in the diet of a predator. The combination of these two approaches, however, has thus far been limited and qualitative. We propose a mixing model for FAP that follows the Bayesian machinery employed in state-of-the-art mixing models for SI.
View Article and Find Full Text PDFRecovery of overexploited marine populations has been slow, and most remain below target biomass levels. A key question is whether this is due to insufficient reductions in harvest rates or the erosion of population resilience. Using a global meta-analysis of overfished stocks, we find that resilience of those stocks subjected to moderate levels of overfishing is enhanced, not compromised, offering the possibility of swift recovery.
View Article and Find Full Text PDF