Chemical bonding in main-group IV chalcogenides is an intensely discussed topic, easily understandable because of their remarkable physical properties that predestine these solid-state materials for their widespread use in, for instance, thermoelectrics and phase-change memory applications. The atomistic origin of their unusual property portfolio remains somewhat unclear, however, even though different and sometimes conflicting chemical-bonding concepts have been introduced in the recent years. Here, it is proposed that projecting phononic force-constant tensors for pairs of atoms along differing directions and ranges provide a suitable and quantitative descriptor of the bonding nature for these materials.
View Article and Find Full Text PDFDoping is indispensable to tailor phase-change materials (PCM) in optical and electronic data storage. Very few experimental studies, however, have provided quantitative information on the distribution of dopants on the atomic-scale. Here, we present atom-resolved images of Ag and In dopants in SbTe-based (AIST) PCM using electron microscopy and atom-probe tomography.
View Article and Find Full Text PDFInSe has been known for over 100 years and recently attracted interest as a promising candidate for a variety of applications, such as solar cells, photodiodes, and phase-change memories. Despite the broad concern for possible uses, its polymorphism and structure are poorly characterized. By combining X-ray diffraction, transmission electron microscopy, and quantum-chemical calculations, we present here the crystal structures of two layered room-temperature polytypes: 3R and 2H InSe.
View Article and Find Full Text PDFWe have performed an in-depth study of the chemical bonding in manganese oxide (MnO) and carbodiimide (MnNCN) from correlated spin-polarized density functional calculations. The chemical-bonding data were produced using the LOBSTER package, which has recently been enabled to process PAW-based output from Quantum ESPRESSO. Our results show that the ground states of MnO and MnNCN are similar, namely, antiferromagnetic structures whose axes are the MnO cubic [111] and the MnNCN hexagonal [001] axes, in agreement with experimental results.
View Article and Find Full Text PDFA hexagonal phase in the ternary Ge-Se-Te system with an approximate composition of GeSe Te has been known since the 1960s but its structure has remained unknown. We have succeeded in growing single crystals by chemical transport as a prerequisite to solve and refine the Ge Se Te structure. It consists of layers that are held together by van der Waals type weak chalcogenide-chalcogenide interactions but also display unexpected Ge-Ge contacts, as confirmed by electron microscopy analysis.
View Article and Find Full Text PDF