Publications by authors named "Philipp Kahle"

Accumulating evidence demonstrates that alpha-synuclein (α-syn) pathology associated with Parkinson's disease (PD) is not limited to the brain, as it also appears in a select number of peripheral tissues including the liver. In this study, we identified a number of PD-associated α-syn post-translational modifications in the livers of (Thy-1)-h[A30P] mice, a mouse model of familial PD expressing human α-syn harboring the A30P mutation driven by a neuron-specific promoter. , we also demonstrate that human hepatocytes induce post-translational modifications following α-syn fibrillar (PFF) treatment.

View Article and Find Full Text PDF

Background: Atypical teratoid rhabdoid tumors (ATRT) are incurable high-grade pediatric brain tumors. Despite intensive research efforts, the prognosis for ATRT patients under currently established treatment protocols is poor. While novel therapeutic strategies are urgently needed, the generation of molecular-driven treatment concepts is a challenge mainly due to the absence of actionable genetic alterations.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on a new mutation in the PINK1 gene linked to Parkinson's disease in an Indian family, emphasizing the need for more research on PD in this population.
  • A novel homozygous PINK1 mutation (p.F385S) was discovered that destabilizes the protein’s active state, affecting its ability to perform essential functions related to mitochondrial health.
  • This mutation results in impaired phosphorylation and reduced mitophagy, contributing to the understanding of PD at a molecular level.
View Article and Find Full Text PDF

Trans-activation response DNA binding protein of 43 kDa (TDP-43) regulates a great variety of cellular processes in the nucleus and cytosol. In addition, a defined subset of neurodegenerative diseases is characterized by nuclear depletion of TDP-43 as well as cytosolic mislocalization and aggregation. To perform its diverse functions TDP-43 can associate with different ribonucleoprotein complexes.

View Article and Find Full Text PDF

Nutritional influences have been discussed as potential modulators of Parkinson's disease (PD) pathology through various epidemiological and physiological studies. In animal models, a high-fat diet (HFD) with greater intake of lipid-derived calories leads to accelerated disease onset and progression. The underlying molecular mechanisms of HFD-induced aggravated pathology, however, remain largely unclear.

View Article and Find Full Text PDF
Article Synopsis
  • Single-cell transcriptomics has identified specific glial activation states linked to neurodegenerative diseases like Alzheimer’s and Parkinson’s, potentially leading to new therapies.
  • The study investigated cerebrospinal fluid (CSF) proteome changes in mouse models of these diseases and found over 20 glial-derived proteins that increase with age.
  • These findings suggest that changes in the cellular transcriptome reflect corresponding shifts in CSF protein levels, highlighting the importance of identifying biomarkers that can monitor disease progression and treatment responses.
View Article and Find Full Text PDF
Article Synopsis
  • TDP-43 is a protein linked to diseases like ALS and frontotemporal lobar degeneration, playing a key role in RNA processing and forming harmful aggregates.
  • Research showed that acetylation at specific lysine positions (K84 and K136) negatively impacts TDP-43's nuclear import and RNA binding, leading to its phase separation and aggregation.
  • The study highlighted that sirtuin-1 can deacetylate K136-acetylated TDP-43, potentially reducing its aggregation, which hints at possible regulatory pathways for TDP-43-related diseases.
View Article and Find Full Text PDF

Mitophagy, the selective degradation of mitochondria by autophagy, affects defective mitochondria following damage or stress. At the onset of mitophagy, parkin ubiquitylates proteins on the mitochondrial outer membrane. While the role of parkin at the onset of mitophagy is well understood, less is known about its activity during later stages in the process.

View Article and Find Full Text PDF

Mitochondria are important organelles in eukaryotes. Turnover and quality control of mitochondria are regulated at the transcriptional and posttranslational level by several cellular mechanisms. Removal of defective mitochondrial proteins is mediated by mitochondria resident proteases or by proteasomal degradation of individual proteins.

View Article and Find Full Text PDF

Background: Proteopathic brain lesions are a hallmark of many age-related neurodegenerative diseases including synucleinopathies and develop at least a decade before the onset of clinical symptoms. Thus, understanding of the initiation and propagation of such lesions is key for developing therapeutics to delay or halt disease progression.

Methods: Alpha-synuclein (αS) inclusions were induced in long-term murine and human slice cultures by seeded aggregation.

View Article and Find Full Text PDF

While the initial pathology of Parkinson's disease and other α-synucleinopathies is often confined to circumscribed brain regions, it can spread and progressively affect adjacent and distant brain locales. This process may be controlled by cellular receptors of α-synuclein fibrils, one of which was proposed to be the LAG3 immune checkpoint molecule. Here, we analysed the expression pattern of LAG3 in human and mouse brains.

View Article and Find Full Text PDF

Synucleinopathies are neurodegenerative disorders involving pathological alpha-synuclein (αSyn) protein, including dementia with Lewy bodies, multiple system atrophy and Parkinson's disease (PD). Current in vivo models of synucleinopathy include transgenic mice overexpressing αSyn variants and methods based on administration of aggregated, exogenous αSyn. Combining these techniques offers the ability to study consequences of introducing pathological αSyn into primed neuronal environments likely to develop synucleinopathy.

View Article and Find Full Text PDF
Article Synopsis
  • Consecutive adult neurogenesis occurs in the V-SVZ, but its effects in areas like periventricular regions (PVRs) remain unclear, especially concerning dopamine's role in neural stem cell proliferation.
  • The study aimed to examine how chronic dopaminergic neurodegeneration impacts neurogenesis in the PVRs of the V-SVZ and mid/hindbrain using two different Parkinson’s disease mouse models.
  • Results showed that while overall neurogenesis in the V-SVZ remained unchanged, there was a reduction in specific activated neural stem cells, and no evidence supported increased stem cell activation in the mid/hindbrain PVRs following dopaminergic neurodegeneration.
View Article and Find Full Text PDF

PINK1 loss-of-function mutations cause early onset Parkinson disease. PINK1-Parkin mediated mitophagy has been well studied, but the relevance of the endogenous process in the brain is debated. Here, the absence of PINK1 in human dopaminergic neurons inhibits ionophore-induced mitophagy and reduces mitochondrial membrane potential.

View Article and Find Full Text PDF
Article Synopsis
  • * Research shows that Medin aggregates develop in the aorta and brain blood vessels of mice as they age, and removing the precursor protein MFG-E8 stops these deposits and helps maintain brain blood vessel function.
  • * Because of the widespread presence of Medin and its link to aging-related vascular issues, focusing on Medin could be a new strategy for promoting healthier aging.
View Article and Find Full Text PDF

Alpha-synucleinopathies are a group of progressive neurodegenerative disorders, characterized by intracellular deposits of aggregated α-synuclein (αS). The clinical heterogeneity of these diseases is thought to be attributed to conformers (or strains) of αS but the contribution of inclusions in various cell types is unclear. The aim of the present work was to study αS conformers among different transgenic (TG) mouse models of α-synucleinopathies.

View Article and Find Full Text PDF

Insoluble, hyperubiquitylated TAR DNA-binding protein of 43 kDa (TDP-43) in the central nervous system characterizes frontotemporal dementia and ALS in many individuals with these neurodegenerative diseases. The causes for neuropathological TDP-43 aggregation are unknown, but it has been suggested that stress granule (SG) formation is important in this process. Indeed, in human embryonic kidney HEK293E cells, various SG-forming conditions induced very strong TDP-43 ubiquitylation, insolubility, and reduced splicing activity.

View Article and Find Full Text PDF

Parkin is an ubiquitin ligase regulating mitochondrial quality control reactions, including the autophagic removal of depolarized mitochondria (mitophagy). Parkin-mediated protein ubiquitinations may be counteracted by deubiquitinating enzymes (DUBs). We conducted a high-content imaging screen of Parkin translocation to depolarized mitochondria after siRNA mediated silencing of each DUB in Parkin overexpressing HeLa cells.

View Article and Find Full Text PDF

The pathophysiology of Parkinson's disease is characterized by the abnormal accumulation of α-synuclein (α-Syn), eventually resulting in the formation of Lewy bodies and neurites in surviving neurons in the brain. Although α-Syn aggregation has been extensively studied in vitro, there is limited in vivo knowledge on α-Syn aggregation. Here, we used the powerful genetics of Drosophila melanogaster and developed an in vivo assay to monitor α-Syn accumulation by using a bimolecular fluorescence complementation assay.

View Article and Find Full Text PDF

TAR DNA-binding protein of 43 kDa (TDP-43) forms pathological aggregates in neurodegenerative diseases, particularly in certain forms of frontotemporal dementia and amyotrophic lateral sclerosis. Pathological modifications of TDP-43 include proteolytic fragmentation, phosphorylation, and ubiquitinylation. A pathognomonic TDP-43 C-terminal fragment (CTF) spanning amino acids 193-414 contains only four lysine residues that could be potentially ubiquitinylated.

View Article and Find Full Text PDF

Onset and progression of neurodegenerative disorders, including synucleinopathies such as Parkinson's disease, have been associated with various environmental factors. A highly compelling association from a therapeutic point of view has been found between a physically active lifestyle and a significantly reduced risk for Parkinson's disease. Mimicking such conditions in animal models by promoting physical activity, social interactions, and novel surroundings yields in a so-called enriched environment known to enhance adult neurogenesis, increase synaptic plasticity, and decelerate neuronal loss.

View Article and Find Full Text PDF

Introduction: Intraneuronal inclusions of alpha-synuclein are commonly found in the brain of patients with Parkinson's disease and other α-synucleinopathies. The correlation between alpha-synuclein pathology and symptoms has been studied in various animal models. In (Thy-1)-h[A30P] alpha-synuclein transgenic mice, behavioral and motor abnormalities were reported from 12 and 15 months, respectively.

View Article and Find Full Text PDF

The abnormal accumulation of α-synuclein aggregates in neurons, nerve fibers, or glial cells is the hallmark of a group of neurodegenerative diseases known collectively as α-synucleinopathies. Clinical, neuropathological, and experimental evidence strongly suggests that α-synuclein plays a role not only as a trigger of pathological processes at disease inception, but also as a mediator of pathological spreading during disease progression. Specific properties of α-synuclein, such as its ability to pass from one neuron to another, its tendency to aggregate, and its potential to generate self-propagating species, have been described and elucidated in animal models and may contribute to the relentless exacerbation of Parkinson's disease pathology in patients.

View Article and Find Full Text PDF

Leucine-rich repeat kinase 2 (LRRK2), a multi-domain protein, is a key causative factor in Parkinson's disease (PD). Identification of novel substrates and the molecular mechanisms underlying the effects of LRRK2 are essential for understanding the pathogenesis of PD. In this study, we showed that LRRK2 played an important role in neuronal cell death by directly phosphorylating and activating apoptosis signal-regulating kinase 1 (ASK1).

View Article and Find Full Text PDF