Objective: The profound immunosuppression found in glioblastoma (GBM) patients is a critical barrier to effective immunotherapy. Multiple mechanisms of tumor-mediated immune suppression exist, and the induction of immunosuppressive monocytes such as myeloid-derived suppressor cells (MDSCs) is increasingly appreciated as a key part of this pathology. GBM-derived extracellular vesicles (EVs) can induce the formation of MDSCs.
View Article and Find Full Text PDFReflecting the first wave COVID-19 pandemic in Central Europe (i.e. March 16th-April 15th, 2020) the neurosurgical community witnessed a general diminution in the incidence of emergency neurosurgical cases, which was impelled by a reduced number of traumatic brain injuries (TBI), spine conditions, and chronic subdural hematomas (CSDH).
View Article and Find Full Text PDFGlioblastoma (GBM) is the most common primary brain tumor in adults an carries and carries a terrible prognosis. The current regiment of surgical resection, radiation, and chemotherapy has remained largely unchanged in recent years as new therapeutic approaches have struggled to demonstrate benefit. One of the most challenging hurdles to overcome in developing novel treatments is the profound immune suppression found in many GBM patients.
View Article and Find Full Text PDFThe perforating arteries in the dorsolateral zone of the midbrain play a crucial role in the functions of the brain stem. Their damage due to herniation, pathological lesions, or surgery, favored by the narrow tentorial incisura, can lead to hemorrhages or ischemia and subsequently to severe consequences for the patient. In literature, not much attention has been directed to the perforating arteries in the lemniscus; in fact, no reports on the perforators of this anatomical region are available.
View Article and Find Full Text PDFA hallmark of topological phases is the occurrence of topologically protected modes at the system's boundary. Here, we find topological phases in the antisymmetric Lotka-Volterra equation (ALVE). The ALVE is a nonlinear dynamical system and describes, for example, the evolutionary dynamics of a rock-paper-scissors cycle.
View Article and Find Full Text PDFCircular RNAs (circRNAs) are evolutionarily conserved RNA species that are formed when exons "back-splice" to each other. Current computational algorithms to detect these back-splicing junctions produce divergent results, and hence there is a need for a method to distinguish true-positive circRNAs. To this end, we developed Assembly based CircRNA Validator (ACValidator) for verification of circRNAs.
View Article and Find Full Text PDFA guiding principle in self-assembly is that, for high production yield, nucleation of structures must be significantly slower than their growth. However, details of the mechanism that impedes nucleation are broadly considered irrelevant. Here, we analyze self-assembly into finite-sized target structures employing mathematical modeling.
View Article and Find Full Text PDFCircular RNAs (circRNAs) are a class of non-coding RNAs involved in functions including micro-RNA (miRNA) regulation, mediation of protein-protein interactions, and regulation of parental gene transcription. In classical next generation RNA sequencing (RNA-seq), circRNAs are typically overlooked as a result of poly-A selection during construction of mRNA libraries, or are found at very low abundance, and are therefore difficult to isolate and detect. Here, a circRNA library construction protocol was optimized by comparing library preparation kits, pre-treatment options and various total RNA input amounts.
View Article and Find Full Text PDFObjective: To assess the prognostic profile, clinical outcome, treatment-associated morbidity, and treatment burden of elderly patients with glioblastoma (GBM) undergoing microsurgical tumor resection as part of contemporary treatment algorithms.
Methods: We retrospectively identified patients with GBM ≥65 years of age who were treated by resection at 2 neuro-oncology centers. Survival was assessed by Kaplan-Meier analyses; log-rank tests identified prognostic factors.
Background: Circular RNAs (circRNAs) are a novel class of endogenous, non-coding RNAs that form covalently closed continuous loops and that are both highly conserved and abundant in the mammalian brain. A role for circRNAs in sponging microRNAs (miRNAs) has been proposed, but the circRNA-miRNA-mRNA interaction networks in human brain cells have not been defined. Therefore, we identified circRNAs in RNA sequencing data previously generated from astrocytes microdissected from the posterior cingulate (PC) of Alzheimer's disease (AD) patients (N = 10) and healthy elderly controls (N = 10) using four circRNA prediction algorithms - CIRI, CIRCexplorer, find_circ and KNIFE.
View Article and Find Full Text PDFDespite its relevance in biology and engineering, the molecular mechanism driving cavitation in water remains unknown. Using computer simulations, we investigate the structure and dynamics of vapor bubbles emerging from metastable water at negative pressures. We find that in the early stages of cavitation, bubbles are irregularly shaped and become more spherical as they grow.
View Article and Find Full Text PDFRPE65 is essential for both rod- and cone-mediated vision. So far, more than 120 disease-associated mutations have been identified in the human RPE65 gene. Differential clinical manifestations suggested that some patients suffer from null mutations while others retain residual RPE65 activity and some useful vision.
View Article and Find Full Text PDFThe investigation of cavitation in metastable liquids with molecular simulations requires an appropriate definition of the volume of the vapour bubble forming within the metastable liquid phase. Commonly used approaches for bubble detection exhibit two significant flaws: first, when applied to water they often identify the voids within the hydrogen bond network as bubbles thus masking the signature of emerging bubbles and, second, they lack thermodynamic consistency. Here, we present two grid-based methods, the M-method and the V-method, to detect bubbles in metastable water specifically designed to address these shortcomings.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
May 2014
Several proton-disordered crystalline ice structures are known to proton order at sufficiently low temperatures, provided that the right preparation procedure is used. For cubic ice, ice Ic, however, no proton ordering has been observed so far. Here, we subject ice Ic to an experimental protocol similar to that used to proton order hexagonal ice.
View Article and Find Full Text PDFThe accurate identification and classification of local ordered and disordered structures is an important task in atomistic computer simulations. Here, we demonstrate that properly trained artificial neural networks can be used for this purpose. Based on a neural network approach recently developed for the calculation of energies and forces, the proposed method recognizes local atomic arrangements from a set of symmetry functions that characterize the environment around a given atom.
View Article and Find Full Text PDFSingle-cell level measurements are necessary to characterize the intrinsic biological variability in a population of cells. In this study, we demonstrate that, with the microarrays for mass spectrometry platform, we are able to observe this variability. We monitor environmentally (2-deoxy-D-glucose) and genetically (ΔPFK2) perturbed Saccharomyces cerevisiae cells at the single-cell, few-cell, and population levels.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
February 2010
Free-energy differences computed from fast-switching simulations or measurements according to the Jarzynski equation are independent of the particular protocol specifying how the control parameter is changed in time. In contrast, the average work carried out on the system as well the accuracy of the resulting free energy strongly depend on the protocol. Recently, Schmiedl and Seifert [Phys.
View Article and Find Full Text PDF