Publications by authors named "Philipp Freislederer"

Purpose: Due to its close vicinity to critical structures, especially the spinal cord, standards for safety for spine stereotactic body radiotherapy (SBRT) should be high. This study was conducted, to evaluate intrafractional motion during spine SBRT for patients without individualized immobilization (e.g.

View Article and Find Full Text PDF

Background: Real-time tumor tracking is one motion management method to address motion-induced uncertainty. To date, fiducial markers are often required to reliably track lung tumors with X-ray imaging, which carries risks of complications and leads to prolonged treatment time. A markerless tracking approach is thus desirable.

View Article and Find Full Text PDF

In modern radiotherapy (RT), especially for stereotactic radiotherapy or stereotactic radiosurgery treatments, image guidance is essential. Recently, the ExacTrac Dynamic (EXTD) system, a new combined surface-guided RT and image-guided RT (IGRT) system for patient positioning, monitoring, and tumor targeting, was introduced in clinical practice. The purpose of this study was to provide more information about the geometric accuracy of EXTD and its workflow in a clinical environment.

View Article and Find Full Text PDF

Purpose: The interplay between respiratory tumor motion and dose application by intensity modulated radiotherapy (IMRT) techniques can potentially lead to undesirable and non-intuitive deviations from the planned dose distribution. We developed a 4D Monte Carlo (MC) dose recalculation framework featuring statistical breathing curve sampling, to precisely simulate the dose distribution for moving target volumes aiming at a comprehensive assessment of interplay effects.

Methods: We implemented a dose accumulation tool that enables dose recalculations of arbitrary breathing curves including the actual breathing curve of the patient.

View Article and Find Full Text PDF

Background And Purpose: Patients receiving cranial radiotherapy are immobilized with a thermoplastic mask to restrict patient motion. Depending on the target volume margins and treatment dose, different mask systems are used. Intrafractional movements can be monitored using stereoscopic X-ray imaging.

View Article and Find Full Text PDF

Frameless single-isocenter non-coplanar stereotactic radiosurgery (SRS) for patients with multiple brain metastases is a treatment at high geometrical complexity. The goal of this study is to analyze the dosimetric impact of non-coplanar image guidance with stereoscopic X-ray imaging. Such an analysis is meant to provide insights on the adequacy of safety margins, and to evaluate the benefit of imaging at non-coplanar configurations.

View Article and Find Full Text PDF

Background: Patients with left-sided breast cancer have an increased risk of cardiovascular disease (CVD) after radiotherapy (RT). While the awareness of cardiac toxicity has increased enormously over the last decade, the role of individual baseline cardiac risks has not yet been systematically investigated. Aim of the present study was to evaluate the impact of baseline CVD risks on radiation-induced cardiac toxicity.

View Article and Find Full Text PDF

Background: Volumetric Modulated Arc Therapy (VMAT) techniques have recently been implemented in clinical practice for total-body irradiation (TBI). To date, most techniques still use special couches, translational tables, or other self-made immobilization devices for dose delivery. Aim of the present study was to report the first results of a newly developed rotatable tabletop designed for VMAT-TBI.

View Article and Find Full Text PDF

Objective: The impact of optical surface guidance on the use of portal imaging and the initial set-up duration in patients receiving postoperative radiotherapy of the breast or chest wall was investigated.

Material And Methods: A retrospective analysis was performed including breast cancer patients who received postoperative radiotherapy between January 2016 and December 2016. One group of patients received treatment before the optical surface scanner was installed (no-OSS) and the other group was positioned using the additional information derived by the optical surface scanner (OSS).

View Article and Find Full Text PDF

Purpose: The need for four-dimensional (4D) treatment planning becomes indispensable when it comes to radiation therapy for moving tumors in the thoracic and abdominal regions. The primary purpose of this study is to combine the actual breathing trace during each individual treatment fraction with the Linac's log file information and Monte Carlo 4D dose calculations. We investigated this workflow on multiple computed tomography (CT) datasets in a clinical environment for stereotactic body radiation therapy (SBRT) treatment planning.

View Article and Find Full Text PDF

Respiratory motion remains a source of major uncertainties in radiotherapy. Respiratory correlated computed tomography (referred to as 4DCT) serves as one way of reducing breathing artifacts in 3D-CTs and allows the investigation of tumor motion over time. The quality of the 4DCT images depends on the data acquisition scheme, which in turn is dependent on the vendor.

View Article and Find Full Text PDF

Purpose: Modern breast cancer radiotherapy techniques, such as respiratory-gated radiotherapy in deep-inspiration breath-hold (DIBH) or volumetric-modulated arc radiotherapy (VMAT) have been shown to reduce the high dose exposure of the heart in left-sided breast cancer. The aim of the present study was to comparatively estimate the excess relative and absolute risks of radiation-induced secondary lung cancer and ischemic heart disease for different modern radiotherapy techniques.

Methods: Four different treatment plans were generated for ten computed tomography data sets of patients with left-sided breast cancer, using either three-dimensional conformal radiotherapy (3D-CRT) or VMAT, in free-breathing (FB) or DIBH.

View Article and Find Full Text PDF

Background: Fiducial markers are the superior method to compensate for interfractional motion in liver SBRT. However this method is invasive and thereby limits its application range. In this retrospective study, the compensation method for the interfractional motion using fiducial markers (gold standard) was compared to a new non-invasive approach, which does rely on the organ motion of the liver and the relative tumor position within this volume.

View Article and Find Full Text PDF

Background: Knowing the technical characteristics of gated radiotherapy equipment is crucial for ensuring precise and accurate treatment when using techniques such as Deep-Inspiration Breath-Hold and gating under free breathing. With one of the first installations of the novel surface imaging system Catalyst™ (C-RAD AB, Sweden) in connection with an Elekta Synergy linear accelerator (Elekta AB, Sweden) via the Elekta Response Interface, characteristics like dose delivery accuracy and time delay were investigated prior to clinical implementation of gated treatments in our institution.

Methods: In this study a moving phantom was used to simulate respiratory motion which was registered by the Catalyst™ system.

View Article and Find Full Text PDF