The round goby, Neogobius melanostomus, is a successful invasive fish species. Originating from the Caspian and Black Sea, it is now distributed widely within European fresh- and brackish waters. The River Rhine was colonized in 2008 only a few years after the opening of the Rhine-Main-Danube canal and only four years after N.
View Article and Find Full Text PDFThis study examines the impact of boldness on foraging competition of the highly invasive round goby Neogobius melanostomus Pallas 1815. Individual risk tolerance, or boldness, was measured as the time to resume movement after a simulated predation strike. Fish that resumed movement faster were categorized as "bold," fish that took more time to resume movement were categorized as "shy" and those that fell in between these two categories were determined to have "intermediate" boldness.
View Article and Find Full Text PDFThe global energy system changes towards renewables-dominated and liberalized markets. This requires making novel trade-offs between the profitable development of hydropower and its environmental effects on the natural flow regime. Here, we used a pristine river as a model for how these future changes will affect the natural flow regime and identify future changes on previously overlooked levels.
View Article and Find Full Text PDFDifferences between individuals in behavioral type (i.e. animal personality) are ecologically and evolutionarily important because they can have significant effects on fitness components such as growth and predation risk.
View Article and Find Full Text PDFAnimal personalities are an important factor that affects the dispersal of animals. In the context of aquatic species, dispersal modeling needs to consider that most freshwater ecosystems are highly fragmented by barriers reducing longitudinal connectivity. Previous research has incorporated such barriers into dispersal models under the neutral assumption that all migrating animals attempt to ascend at all times.
View Article and Find Full Text PDFWater level fluctuations in lakes lead to shoreline displacement. The seasonality of flooding or beaching of the littoral area affects nutrient cycling, redox gradients in sediments, and life cycles of aquatic organisms. Despite the ecological importance of water level fluctuations, we still lack a method that assesses water levels in the context of hydropower operations.
View Article and Find Full Text PDFBackground: Theory predicts that prey facing a combination of predators with different feeding modes have two options: to express a response against the feeding mode of the most dangerous predator, or to express an intermediate response. Intermediate phenotypes protect equally well against several feeding modes, rather than providing specific protection against a single predator. Anti-predator traits that protect against a common feeding mode displayed by all predators should be expressed regardless of predator combination, as there is no need for trade-offs.
View Article and Find Full Text PDFHuman-induced nutrient input can change the selection regime and lead to the loss of biodiversity. For example, eutrophication caused speciation reversal in polymorphic whitefish populations through a flattening of littoral-pelagic selection gradients. We investigated the current state of phenotypic and genetic diversity in whitefish (Coregonus macrophthalmus) in a newly restored lake whose nutrient load has returned to pre-eutrophication levels and found that whitefish spawning at different depths varied phenotypically and genetically: individuals spawning at shallower depth had fewer gill rakers, faster growth, and a morphology adapted to benthic feeding, and they showed higher degrees of diet specialization than deeper spawning individuals.
View Article and Find Full Text PDF