Publications by authors named "Philipp Constantinidis"

The online coupling of size exclusion chromatography (SEC) to capillary enhanced Raman spectroscopy (CERS) based on a liquid core waveguide (LCW) flow cell was applied for the first time to assess the higher-order structure of different proteins. This setup allows recording of Raman spectra of the monomeric protein within complex mixtures, since SEC enables the separation of the monomeric protein from matrix components such as excipients of a biopharmaceutical product and higher molecular weight species (e.g.

View Article and Find Full Text PDF

ortho-Benzyne, a Kekulé-type biradical is considered to be a key intermediate in the formation of polycyclic aromatic hydrocarbons (PAH) and soot. In the present work we study the ortho-benzyne self-reactions in a hot microreactor and identify the high-temperature products by IR/UV spectroscopy and by photoion mass-selected threshold photoelectron spectroscopy (ms-TPES) in a free jet. Ms-TPES confirms formation of ortho-benzyne as generated from benzocyclobutenedione, as well as benzene, biphenylene, diacetylene, and acetylene, originating from the reaction o-CH → HCC-CCH + CH, and CH.

View Article and Find Full Text PDF

We investigate the self-reaction of benzyl, C H , in a high-temperature pyrolysis reactor. The work is motivated by the observation that resonance-stabilized benzyl radicals can accumulate in reactive environments and contribute to the formation of polycyclic aromatic hydrocarbons (PAHs) and soot. Reaction products are detected by IR/UV ion dip spectroscopy, using infrared radiation from the free electron laser FELIX, and are identified by comparison with computed spectra.

View Article and Find Full Text PDF

Nitrogen-containing resonance-stabilized radicals such as the picolyl radical are important in combustion chemistry and astrochemistry. They have only been scarcely studied because an isomer-selective generation is often difficult. Herein, we present threshold photoelectron spectra of the three picolyl radical isomers, C H N, that were obtained with synchrotron radiation.

View Article and Find Full Text PDF

The reactions of a diborene with elemental selenium or tellurium are shown to afford a diboraselenirane or diboratellurirane, respectively. These reactions are reminiscent of the sequestration of subvalent oxygen and nitrogen in the formation of oxiranes and aziridines; however, such reactivity is not known between alkenes and the heavy chalcogens. Although carbon is too electronegative to affect the reduction of elements with lower relative electronegativity, the highly reducing nature of the B-B double bond enables reactions with Se(0) and Te(0) .

View Article and Find Full Text PDF

Cation-π interactions are one of the most important classes of noncovalent bonding, and are seen throughout biology, chemistry, and materials science. However, in almost every documented case, these interactions play only a supporting role to much stronger covalent or dative bonds, thus making examples of exclusive cation-π bonding exceedingly rare. In this study, a neutral diboryne molecule is found to encapsulate the light alkali metal cations Li(+) and Na(+) in the absence of a net charge, covalent bonds, or lone-pair donor groups.

View Article and Find Full Text PDF

Diborynes, molecules containing homoatomic boron-boron triple bonds, have been investigated by Raman spectroscopy in order to determine the stretching frequencies of their central B≡B units as an experimental measure of homoatomic bond strengths. The observed frequencies between 1600 and 1750 cm(-1) were assigned on the basis of DFT modeling and the characteristic pattern produced by the isotopic distribution of boron. This frequency completes the series of known stretches of homoatomic triple bonds, fitting into the trend established by the long-known stretching frequencies of C≡C and N≡N triple bonds in alkynes and dinitrogen, respectively.

View Article and Find Full Text PDF

Recently 1-(phenylethynyl)naphthalene (1-PEN) was suggested to be the primary dimerization product of phenylpropargyl radicals and therefore an important polycyclic hydrocarbon in combustion processes. Here we describe a spectroscopic investigation of a genuine 1-PEN sample by several complementary techniques, infrared spectroscopy, multiphoton ionization (MPI), and threshold photoelectron spectroscopy. The infrared spectrum recorded in a gas cell confirms that 1-PEN is indeed the previously observed dimerization product of phenylpropargyl.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiongvbaqm7ivnbkb621ac0ijq92itc0j8it): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once