Publications by authors named "Philipp Benner"

An in-depth insight into the chemistry and nature of the individual chemical bonds is essential for understanding materials. Bonding analysis is thus expected to provide important features for large-scale data analysis and machine learning of material properties. Such chemical bonding information can be computed using the LOBSTER software package, which post-processes modern density functional theory data by projecting the plane wave-based wave functions onto an atomic orbital basis.

View Article and Find Full Text PDF

Motivation: Deep learning has moved to the forefront of tandem mass spectrometry-driven proteomics and authentic prediction for peptide fragmentation is more feasible than ever. Still, at this point spectral prediction is mainly used to validate database search results or for confined search spaces. Fully predicted spectral libraries have not yet been efficiently adapted to large search space problems that often occur in metaproteomics or proteogenomics.

View Article and Find Full Text PDF

Phototrophic microorganisms that convert carbon dioxide are being explored for their capacity to solve different environmental issues and produce bioactive compounds for human therapeutics and as food additives. Full-scale phototrophic cultivation of microalgae and cyanobacteria can be done in open ponds or closed photobioreactor systems, which have a broad range of volumes. This review focuses on laboratory-scale photobioreactors and their different designs.

View Article and Find Full Text PDF

Recent efforts to measure epigenetic marks across a wide variety of different cell types and tissues provide insights into the cell type-specific regulatory landscape. We use these data to study whether there exists a correlate of epigenetic signals in the DNA sequence of enhancers and explore with computational methods to what degree such sequence patterns can be used to predict cell type-specific regulatory activity. By constructing classifiers that predict in which tissues enhancers are active, we are able to identify sequence features that might be recognized by the cell in order to regulate gene expression.

View Article and Find Full Text PDF

Genome segmentation methods are powerful tools to obtain cell type or tissue-specific genome-wide annotations and are frequently used to discover regulatory elements. However, traditional segmentation methods show low predictive accuracy and their data-driven annotations have some undesirable properties. As an alternative, we developed ModHMM, a highly modular genome segmentation method.

View Article and Find Full Text PDF

We present the software Condition-specific Regulatory Units Prediction (CRUP) to infer from epigenetic marks a list of regulatory units consisting of dynamically changing enhancers with their target genes. The workflow consists of a novel pre-trained enhancer predictor that can be reliably applied across cell types and species, solely based on histone modification ChIP-seq data. Enhancers are subsequently assigned to different conditions and correlated with gene expression to derive regulatory units.

View Article and Find Full Text PDF

Background: Eukaryotic gene regulation is a complex process comprising the dynamic interaction of enhancers and promoters in order to activate gene expression. In recent years, research in regulatory genomics has contributed to a better understanding of the characteristics of promoter elements and for most sequenced model organism genomes there exist comprehensive and reliable promoter annotations. For enhancers, however, a reliable description of their characteristics and location has so far proven to be elusive.

View Article and Find Full Text PDF

The binding of transcription factors to short recognition sequences plays a pivotal role in controlling the expression of genes. The sequence and shape characteristics of binding sites influence DNA binding specificity and have also been implicated in modulating the activity of transcription factors downstream of binding. To quantitatively assess the transcriptional activity of tens of thousands of designed synthetic sites in parallel, we developed a synthetic version of STARR-seq (synSTARR-seq).

View Article and Find Full Text PDF

Motivation: The construction of statistics for summarizing posterior samples returned by a Bayesian phylogenetic study has so far been hindered by the poor geometric insights available into the space of phylogenetic trees, and ad hoc methods such as the derivation of a consensus tree makeup for the ill-definition of the usual concepts of posterior mean, while bootstrap methods mitigate the absence of a sound concept of variance. Yielding satisfactory results with sufficiently concentrated posterior distributions, such methods fall short of providing a faithful summary of posterior distributions if the data do not offer compelling evidence for a single topology.

Results: Building upon previous work of Billera et al.

View Article and Find Full Text PDF

We present a predictive account on adaptive sequential sampling of stimulus-response relations in psychophysical experiments. Our discussion applies to experimental situations with ordinal stimuli when there is only weak structural knowledge available such that parametric modeling is no option. By introducing a certain form of partial exchangeability, we successively develop a hierarchical Bayesian model based on a mixture of Pólya urn processes.

View Article and Find Full Text PDF

In two-dimensional parameter spaces, nonlinear systems producing solutions of a fixed periodicity form islands of a characteristic shape, called "shrimp"-shaped domains (SSDs). In simulations of electronic circuits, SSDs of different periodicities were recently found to be connected along spirals. By means of a hardware realization of the simulations, we provide a first direct proof of the real-world existence of this phenomenon.

View Article and Find Full Text PDF