Chloroplasts and mitochondria are unique endosymbiotic cellular organelles surrounded by two membranes. Essential metabolic networking between these compartments and their hosting cells requires the exchange of a large number of biochemical pathway intermediates in a directed and coordinated fashion across their inner and outer envelope membranes. Here, we describe the identification and functional characterization of a highly specific, regulated solute channel in the outer envelope of chloroplasts, named OEP40.
View Article and Find Full Text PDFPeroxisomal protein import is essentially different to the translocation of proteins into other organelles. The molecular mechanisms by which completely folded or even oligomerized proteins cross the peroxisomal membrane remain to be disclosed. The identification of a water-filled pore that is mainly constituted by Pex5 and Pex14 led to the assumption that proteins are translocated through a large, probably transient, protein-conducting channel.
View Article and Find Full Text PDFMethods Mol Biol
March 2014
The planar lipid bilayer technique is a powerful experimental approach for electrical single channel recordings of pore-forming membrane proteins in a chemically well-defined and easily modifiable environment. Here we provide a general survey of the basic materials and procedures required to set up a robust bilayer system and perform electrophysiological single channel recordings of reconstituted proteins suitable for the in-depth characterization of their functional properties.
View Article and Find Full Text PDFThe transition from water soluble state to an integral membrane protein state is a crucial step in the formation of the active form of many pore-forming or receptor proteins. Albeit this, high resolution techniques which allow assay of protein membrane binding and concomitant development of the final active form in the membrane await further development. Here, we describe a horizontal artificial bilayers setup allowing for simultaneous electrical and optical measurements at a single molecule level.
View Article and Find Full Text PDFProteins of living cells carry out their specialized functions within various subcellular membranes or aqueous spaces. Approximately half of all the proteins of a typical cell are transported into or across membranes. Targeting and transport to their correct subcellular destinations are essential steps in protein biosynthesis.
View Article and Find Full Text PDFAbout 50% of the cellular proteins have to be transported into or across cellular membranes. This transport is an essential step in the protein biosynthesis. In eukaryotic cells secretory proteins are transported into the endoplasmic reticulum before they are transported in vesicles to the plasma membrane.
View Article and Find Full Text PDF