The Drosophila Trithorax group (TrxG) protein ASH1 remains associated with mitotic chromatin through mechanisms that are poorly understood. ASH1 dimethylates histone H3 at lysine 36 via its SET domain. Here, we identify domains of the TrxG protein ASH1 that are required for mitotic chromatin attachment in living Drosophila.
View Article and Find Full Text PDFNat Rev Mol Cell Biol
May 2014
In any biological system with memory, the state of the system depends on its history. Epigenetic memory maintains gene expression states through cell generations without a change in DNA sequence and in the absence of initiating signals. It is immensely powerful in biological systems - it adds long-term stability to gene expression states and increases the robustness of gene regulatory networks.
View Article and Find Full Text PDFThe Polycomb (PcG) and Trithorax (TrxG) group proteins work antagonistically on several hundred developmentally important target genes, giving stable mitotic memory, but also allowing flexibility of gene expression states. How this is achieved in quantitative terms is poorly understood. Here, we present a quantitative kinetic analysis in living Drosophila of the PcG proteins Enhancer of Zeste, (E(Z)), Pleiohomeotic (PHO) and Polycomb (PC) and the TrxG protein absent, small or homeotic discs 1 (ASH1).
View Article and Find Full Text PDFHow fast? How strong? How many? So what? Why do numbers matter in biology? Chromatin binding proteins are forever in motion, exchanging rapidly between bound and free pools. How do regulatory systems whose components are in constant flux ensure stability and flexibility? This review explores the application of quantitative and mathematical approaches to mechanisms of epigenetic regulation. We discuss methods for measuring kinetic parameters and protein quantities in living cells, and explore the insights that have been gained by quantifying and modelling dynamics of chromatin binding proteins.
View Article and Find Full Text PDFEpigenetic memory mediated by Polycomb group (PcG) proteins must be maintained during cell division, but must also be flexible to allow cell fate transitions. Here we quantify dynamic chromatin-binding properties of PH::GFP and PC::GFP in living Drosophila in two cell types that undergo defined differentiation and mitosis events. Quantitative fluorescence recovery after photobleaching (FRAP) analysis demonstrates that PcG binding has a higher plasticity in stem cells than in more determined cells and identifies a fraction of PcG proteins that binds mitotic chromatin with up to 300-fold longer residence times than in interphase.
View Article and Find Full Text PDFNon-coding RNAs regulate dosage compensation in mammals by controlling transcriptional silencing of one of the two X chromosomes in females. The two major transcripts involved in this process are Xist and its antisense counterpart Tsix. Expression of Xist and Tsix from the X inactivation center is mutually exclusive.
View Article and Find Full Text PDF