Publications by authors named "Philip Woost"

Article Synopsis
  • Hypomethylating therapies like decitabine and azacitidine are being researched for treatment of conditions such as acute myeloid leukemia and myelodysplastic syndromes, as well as maintenance after stem cell transplants.
  • These therapies work by reactivating genes silenced by methylation, allowing them to target cancer cells while minimizing damage to healthy stem cells at low doses.
  • A new pharmacodynamic assay to measure levels of DNA methylase 1 (DNMT1) in circulating T cells may help refine the dosing and effectiveness of these therapies in clinical trials.
View Article and Find Full Text PDF

The 5-azacytidine (AZA) and decitabine (DEC) are noncytotoxic, differentiation-inducing therapies approved for treatment of myelodysplastic syndrome, acute myeloid leukemias (AML), and under evaluation as maintenance therapy for AML postallogeneic hematopoietic stem cell transplant and to treat hemoglobinapathies. Malignant cell cytoreduction is thought to occur by S-phase specific depletion of the key epigenetic regulator, DNA methyltransferase 1 (DNMT1) that, in the case of cancers, thereby releases terminal-differentiation programs. DNMT1-targeting can also elevate expression of immune function genes (HLA-DR, MICA, MICB) to stimulate graft versus leukemia effects.

View Article and Find Full Text PDF

The erythrocyte silent Duffy blood group phenotype in Africans is thought to confer resistance to Plasmodium vivax blood-stage infection. However, recent studies report P. vivax infections across Africa in Fy-negative individuals.

View Article and Find Full Text PDF

Background: Sickle cell disease (SCD) is caused by an inherited structural abnormality of adult hemoglobin causing polymerization. Fetal hemoglobin interferes with polymerization but is epigenetically silenced by DNA methyltransferase 1 (DNMT1) in adult erythropoiesis. Decitabine depletes DNMT1 and increases fetal and total hemoglobin in SCD patients, but is rapidly catabolized by cytidine deaminase (CDA) in vivo.

View Article and Find Full Text PDF

Patients with early relapse of acute myelogenous leukemia (AML) or myelodysplastic syndrome (MDS) after hematopoietic cell transplantation (HCT) have a poor prognosis, and no standard treatment. Twenty-nine patients with early disease recurrence post-transplantation were treated with azacitidine (AZA; median dose, 40 mg/m/day for 5 to 7 days). At a median follow-up of 6.

View Article and Find Full Text PDF

Cell cycle cytometry and analysis are essential tools for studying cells of model organisms and natural populations (e.g., bone marrow).

View Article and Find Full Text PDF

Background: Sickle cell disease (SCD), a congenital hemolytic anemia that exacts terrible global morbidity and mortality, is driven by polymerization of mutated sickle hemoglobin (HbS) in red blood cells (RBCs). Fetal hemoglobin (HbF) interferes with this polymerization, but HbF is epigenetically silenced from infancy onward by DNA methyltransferase 1 (DNMT1).

Methods And Findings: To pharmacologically re-induce HbF by DNMT1 inhibition, this first-in-human clinical trial (NCT01685515) combined 2 small molecules-decitabine to deplete DNMT1 and tetrahydrouridine (THU) to inhibit cytidine deaminase (CDA), the enzyme that otherwise rapidly deaminates/inactivates decitabine, severely limiting its half-life, tissue distribution, and oral bioavailability.

View Article and Find Full Text PDF

Cytokine-mediated phosphorylation of Erk (pErk), ribosomal S6 (pS6), and Stat5 (pStat5) in CD34(+)/CD117(+) blast cells in normal bone marrow from 9 healthy adult donors were analyzed over 60 minutes. Treatment with stem cell factor (SCF), Flt3-ligand (FL), IL-3, and GM-CSF and measurement by multiparametric flow cytometry yielded distinctive, highly uniform phosphoprotein kinetic profiles despite a diverse sample population. The correlated responses for SCF- and FL-stimulated pErk and pS6 were similar.

View Article and Find Full Text PDF

Angiotensin II is a major regulatory peptide for proximal tubule Na(+) reabsorption acting through two distinct receptor subtypes: AT(1) and AT(2). Physiological or pathological roles of AT(2) have been difficult to unravel because angiotensin II can affect Na(+) transport either directly via AT(2) on luminal or peritubular plasma membranes of proximal tubule cells or indirectly via the renal vasculature. Furthermore, separate systemic and intratubular renin-angiotensin systems impart considerable complexity to angiotensin's regulation.

View Article and Find Full Text PDF

Background: CLIC1 is a chloride channel whose cellular role remains uncertain. The distribution of CLIC1 in normal tissues is largely unknown and conflicting data have been reported regarding the cellular membrane fraction in which CLIC1 resides.

Results: New antisera to CLIC1 were generated and were found to be sensitive and specific for detecting this protein.

View Article and Find Full Text PDF

In the proximal convoluted tubule (PCT) angiotensin II (Ang II) modulates fluid and electrolyte transport through at least two pharmacologically distinct receptor subtypes: AT(1) and AT(2). Development of cell lines that lack these receptors are potentially useful models to probe the complex cellular details of Ang II regulation. To this end, angiotensin receptor- deficient mice were bred with an Immortomouse(R), which harbors a thermolabile SV40 large-T antigen (Tag).

View Article and Find Full Text PDF

Cellular localization and trafficking of the major angiotensin receptor, AT1, was studied in mouse proximal tubule cell lines because angiotensin II concentrations in the luminal fluid of proximal tubules are greater than the K(d) of the receptor and would predict high turnover rates of the receptor. Mouse proximal tubule cells can exist in 2 polarized, differentiated states after confluence: a protoepithelium and a highly differentiated epithelium. The latter is distinguished by greater polarization of the microtubule cytoskeleton and collection of apical microtubule-dependent membrane proteins in condensed apical recycling endosomes (CARE) in proximity to the primary cilium.

View Article and Find Full Text PDF

Human proximal tubule epithelial cell lines are potentially useful models to elucidate the complex cellular and molecular details of water and electrolyte homeostasis in the kidney. Samples of normal adult human kidney tissue were obtained from surgical specimens, and S1 segments of proximal convoluted tubules were microdissected, placed on collagen-coated culture plate inserts, and cocultured with lethally irradiated 3T3 fibroblasts. Primary cultures of proximal tubule epithelial cells were infected with a replication-defective retroviral construct encoding either wild-type or temperature-sensitive simian virus 40 large T-antigen.

View Article and Find Full Text PDF