Atmos Environ (1994)
September 2018
The contribution of precursor emissions from 17 mobile source sectors to ambient ozone and fine particulate matter levels across the U.S. were evaluated, using the CAMx photochemical model, to identify which mobile source sectors are projected to have the largest impacts on air pollution in 2025.
View Article and Find Full Text PDFBy-products of mobile source combustion processes, such as those associated with gasoline- and diesel-powered engines, include direct emissions of particulate matter as well as precursors to particulate matter and ground-level ozone. Human exposure to fine particulate matter with an aerodynamic diameter smaller than 2.5 μm (PM) is associated with increased incidence of premature mortality and morbidity outcomes.
View Article and Find Full Text PDFIn the United States, general aviation piston-driven aircraft are now the largest source of lead emitted to the atmosphere. Elevated lead concentrations impair children's IQ and can lead to lower earnings potentials. This study is the first assessment of the nationwide annual costs of IQ losses from aircraft lead emissions.
View Article and Find Full Text PDFAlternative fuels represent a potential option for reducing the climate impacts of the aviation sector. The climate impacts of alternatives fuel are traditionally considered as a ratio of life cycle greenhouse gas (GHG) emissions to those of the displaced petroleum product; however, this ignores the climate impacts of the non-CO(2) combustion effects from aircraft in the upper atmosphere. The results of this study show that including non-CO(2) combustion emissions and effects in the life cycle of a Synthetic Paraffinic Kerosene (SPK) fuel can lead to a decrease in the relative merit of the SPK fuel relative to conventional jet fuel.
View Article and Find Full Text PDF