Publications by authors named "Philip W Brownjohn"

Autosomal dominant polycystic kidney disease (ADPKD) is a rare genetic disorder characterised by numerous renal cysts, the progressive expansion of which can impact kidney function and lead eventually to renal failure. Tolvaptan is the only disease-modifying drug approved for the treatment of ADPKD, however its poor side effect and safety profile necessitates the need for the development of new therapeutics in this area. Using a combination of transcriptomic and machine learning computational drug discovery tools, we predicted that a number of existing drugs could have utility in the treatment of ADPKD, and subsequently validated several of these drug predictions in established models of disease.

View Article and Find Full Text PDF

In addition to increased aberrant protein aggregation, inflammation has been proposed as a key element in the pathogenesis and progression of Alzheimer's disease. How inflammation interacts with other disease pathways and how protein aggregation increases during disease are not clear. We used single-molecule imaging approaches and membrane permeabilization assays to determine the effect of chronic exposure to tumour necrosis factor, a master proinflammatory cytokine, on protein aggregation in human-induced pluripotent stem cell-derived neurons harbouring monogenic Alzheimer's disease mutations.

View Article and Find Full Text PDF

Paired muscle stimulation is used clinically to facilitate the performance of motor tasks for individuals with motor dysfunction. However, the optimal temporal relationship between stimuli for enhancing movement remains unknown. We hypothesized that synchronous, muscle stimulation would increase the extent to which stimulated muscles are concurrently prepared for movement.

View Article and Find Full Text PDF

The derivation of microglia from human stem cells provides systems for understanding microglial biology and enables functional studies of disease-causing mutations. We describe a robust method for the derivation of human microglia from stem cells, which are phenotypically and functionally comparable with primary microglia. We used stem cell-derived microglia to study the consequences of missense mutations in the microglial-expressed protein triggering receptor expressed on myeloid cells 2 (TREM2), which are causal for frontotemporal dementia-like syndrome and Nasu-Hakola disease.

View Article and Find Full Text PDF

Human stem cell models have the potential to provide platforms for phenotypic screens to identify candidate treatments and cellular pathways involved in the pathogenesis of neurodegenerative disorders. Amyloid precursor protein (APP) processing and the accumulation of APP-derived amyloid β (Aβ) peptides are key processes in Alzheimer's disease (AD). We designed a phenotypic small-molecule screen to identify modulators of APP processing in trisomy 21/Down syndrome neurons, a complex genetic model of AD.

View Article and Find Full Text PDF
Article Synopsis
  • Repetitive transcranial magnetic stimulation (rTMS) is used to modify corticospinal excitability in humans, with motor evoked potentials (MEPs) serving as a non-invasive measure of its effects on the motor cortex.
  • The study examined how different anesthetics affect MEP amplitudes in rats during intermittent theta burst stimulation (iTBS), a specific rTMS protocol known for its facilitatory effects.
  • Results showed that while MEPs could be induced under both anesthetics, their variability was high, and iTBS did not enhance MEP amplitude, highlighting the need for careful anesthetic selection in rTMS-related research.
View Article and Find Full Text PDF

Cannabinoid receptor agonists are moderately effective at reducing neuropathic pain but are limited by psychoactivity. We developed a styrene maleic acid (SMA) based on the cannabinoid WIN 55,212-2 (WIN) and tested in a rat model of neuropathic pain and in the rotarod test. We hypothesized that miceller preparation can ensure prolonged plasma half-life being above the renal threshold of excretion.

View Article and Find Full Text PDF

Antibody-based methods for the detection and quantification of membrane integral proteins, in particular, the G protein-coupled receptors (GPCRs), have been plagued with issues of primary antibody specificity. In this report, we investigate one of the most commonly utilized commercial antibodies for the cannabinoid CB2 receptor, a GPCR, using immunoblotting in combination with mass spectrometry. In this way, we were able to develop powerful negative and novel positive controls.

View Article and Find Full Text PDF

Background: Theta burst stimulation (TBS) is a pattern of repetitive transcranial magnetic stimulation that has been demonstrated to facilitate or suppress human corticospinal excitability when applied intermittently (iTBS) or continuously (cTBS), respectively. While the fundamental pattern of TBS, consisting of bursts of 50 Hz stimulation repeated at a 5 Hz theta frequency, induces synaptic plasticity in animals and in vitro preparations, the relationship between TBS and underlying cortical firing patterns in the human cortex has not been elucidated.

Objective: To compare the effects of 5 Hz iTBS and cTBS with individualized TBS paradigms on corticospinal excitability and intracortical inhibitory circuits.

View Article and Find Full Text PDF

O-1602 is an atypical cannabinoid that acts as an agonist at GPR55, a g protein-coupled receptor that previous studies have indicated may have a pronociceptive role in neuropathic pain. We administered O-1602 to both naive rats and rats that had undergone chronic constriction injury surgery. O-1602 did not cause any changes in hind paw responses to Von Frey hair testing in naive rats.

View Article and Find Full Text PDF