Publications by authors named "Philip V Holmes"

This study examines the sex-specific effects of gestational exposure (days 6-21) to endocrine-disrupting chemicals such as bisphenol A (BPA), diethylhexyl phthalate (DEHP), or their combination on brain monoamine levels that play an important role in regulating behavior. Pregnant Sprague-Dawley rats were orally administered saline, low doses (5 µg/kg BW/day) of BPA or DEHP, and their combination or a high dose (7.5 mg/kg BW/day) of DEHP alone or in combination with BPA during pregnancy.

View Article and Find Full Text PDF

Prenatal exposures to endocrine disrupting chemicals (EDCs) are correlated with adverse behavioral outcomes, but the effects of combinations of these chemicals are unclear. The aim of this study was to determine the dose-dependent effects of prenatal exposure to EDCs on male and female behavior. Pregnant Sprague-Dawley rats were orally dosed with vehicle, bisphenol A (BPA) (5 μg/kg body weight (BW)/day), low-dose (LD) diethylhexyl phthalate (DEHP) (5 μg/kg BW/day), high-dose (HD) DEHP (7.

View Article and Find Full Text PDF
Article Synopsis
  • The study aims to explore how the composition of gut microbiota influences reward signaling and the role of the vagus nerve in communication between microbiota and the brain.
  • Male germ-free Fisher rats were colonized with gut contents from either low-fat or high-fat fed rats to observe behavioral changes related to food consumption.
  • Results show that high-fat (ConvHF) rats ate more but motivated less for high-fat foods and had lower dopamine levels and receptor expression in the brain's reward center, indicating that gut bacteria can significantly affect feeding behavior through the vagus nerve.
View Article and Find Full Text PDF

Severe traumatic brain injury (sTBI) survivors experience permanent functional disabilities due to significant volume loss and the brain's poor capacity to regenerate. Chondroitin sulfate glycosaminoglycans (CS-GAGs) are key regulators of growth factor signaling and neural stem cell homeostasis in the brain. However, the efficacy of engineered CS (eCS) matrices in mediating structural and functional recovery chronically after sTBI has not been investigated.

View Article and Find Full Text PDF

The neuropeptide galanin has been implicated in stress-related neuropsychiatric disorders in humans and rodent models. While pharmacological treatments for these disorders are ineffective for many individuals, physical activity is beneficial for stress-related symptoms. Galanin is highly expressed in the noradrenergic system, particularly the locus coeruleus (LC), which is dysregulated in stress-related disorders and activated by exercise.

View Article and Find Full Text PDF

The lack of effective therapies for moderate-to-severe traumatic brain injuries (TBIs) leaves patients with lifelong disabilities. Neural stem cells (NSCs) have demonstrated great promise for neural repair and regeneration. However, direct evidence to support their use as a cell replacement therapy for neural injuries is currently lacking.

View Article and Find Full Text PDF

The neuropeptide galanin is a potential therapeutic target for treating stress-related disorders, such as post-traumatic stress disorder (PTSD); however, its effects on contextual fear conditioning (CFC), an accepted animal model of PTSD, are not well understood. Dysregulation of the medial prefrontal cortex (mPFC) is implicated in PTSD. We investigated the effects of galanin (1 ug) administrated bilaterally into the prelimbic cortex, a division of the mPFC, on the consolidation, expression, and extinction of CFC of male Sprague-Dawley rats.

View Article and Find Full Text PDF

Purpose: Oxidative and inflammatory processes play a major role in stress-induced neural atrophy. There is a wide body of literature linking oxidative and inflammatory stress with reductions in neurotrophic factors, stress resilience, and cognitive function. Based on their antioxidant and anti-inflammatory capacity, we investigated the effect of the dietary carotenoids lutein and zeaxanthin, along with the zeaxanthin isomer meso-zeaxanthin (collectively the "macular xanthophylls" [MXans]) on systemic brain-derived neurotrophic factor (BDNF) and anti-oxidant capacity (AOC), and the pro-inflammatory cytokines TNF-α, IL-6, and IL-1β.

View Article and Find Full Text PDF

Purpose: Oxidative stress and systemic inflammation are the root cause of several deleterious effects of chronic psychological stress. We hypothesize that the antioxidant and anti-inflammatory capabilities of the macular carotenoids (MCs) lutein, zeaxanthin, and meso-zeaxanthin could, via daily supplementation, provide a dietary means of benefit.

Methods: A total of 59 young healthy subjects participated in a 12-month, double-blind, placebo-controlled trial to evaluate the effects of MC supplementation on blood cortisol, psychological stress ratings, behavioural measures of mood, and symptoms of sub-optimal health.

View Article and Find Full Text PDF

The neuropeptide galanin is widely distributed in the central and peripheral nervous systems and part of a bigger family of bioactive peptides. Galanin exerts its biological activity through three G-protein coupled receptor subtypes, GAL1-3R. Throughout the last 20years, data has accumulated that galanin can have a neuroprotective effect presumably mediated through the activation of GAL1R and GAL2R.

View Article and Find Full Text PDF

Decades of research confirm that noradrenergic locus coeruleus (LC) neurons are essential for arousal, attention, motivation, and stress responses. While most studies on LC transmission focused unsurprisingly on norepinephrine (NE), adrenergic signaling cannot account for all the consequences of LC activation. Galanin coexists with NE in the vast majority of LC neurons, yet the precise function of this neuropeptide has proved to be surprisingly elusive given our solid understanding of the LC system.

View Article and Find Full Text PDF

In the United States, more than ten million women use contraceptive hormones. Ethinyl estradiol and levonorgestrel have been mainstay contraceptive hormones for the last four decades. Surprisingly, there is scant information regarding their action on the central nervous system and behavior.

View Article and Find Full Text PDF

Our laboratory has previously reported that chronic, voluntary exercise diminishes seizure-related behaviors induced by convulsant doses of kainic acid. The present experiments tested the hypothesis that exercise exerts this protective effect through a mechanism involving suppression of glutamate release in the hippocampal formation. Following three weeks of voluntary wheel running or sedentary conditions, rats were injected with 10 mg/kg of kainic acid, and hippocampal glutamate was measured in real time using a telemetric, in vivo voltammetry system.

View Article and Find Full Text PDF

Rationale: Voluntary aerobic exercise has shown promise as a treatment for substance abuse, reducing relapse in cocaine-dependent people. Wheel running also attenuates drug-primed and cue-induced reinstatement of cocaine seeking in rats, an animal model of relapse. However, in most of these studies, wheel access was provided throughout cocaine self-administration and/or extinction and had effects on several parameters of drug seeking.

View Article and Find Full Text PDF

Current concepts of the neurobiology of stress-related disorders, such as anxiety and depression emphasize disruptions in neural plasticity and neurotrophins. The potent trophic actions of exercise, therefore, represent not only an effective means for prevention and treatment of these disorders, they also afford the opportunity to employ exercise paradigms as a basic research tool to uncover the neurobiological mechanisms underlying these disorders. Novel approaches to studying stress-related disorders focus increasingly on trophic factor signaling in corticolimbic circuits that both mediate and regulate cognitive, behavioral, and physiological responses to deleterious stress.

View Article and Find Full Text PDF

Relapse represents one of the most significant problems in the long-term treatment of drug addiction. Cocaine blocks plasma membrane monoamine transporters and increases dopamine (DA) overflow in the brain, and DA is critical for the motivational and primary reinforcing effects of the drug as well as cocaine-primed reinstatement of cocaine seeking in rats, a model of relapse. Thus, modulators of the DA system may be effective for the treatment of cocaine dependence.

View Article and Find Full Text PDF

Unlabelled: Rats selectively bred for high- and low-capacity for running on a treadmill (HCR; LCR) also differ in wheel-running behavior, but whether wheel-running can be explained by intrinsic or adaptive brain mechanisms is not as yet understood. It is established that motivation of locomotory behavior is driven by dopaminergic transmission in mesolimbic and mesostriatal systems. However, whether voluntary wheel running is associated with enkephalinergic activity in the ventral striatum is not known.

View Article and Find Full Text PDF

The bidirectional comorbidity between epilepsy and depression is associated with severe challenges for treatment efficacy and safety, often resulting in poor prognosis and outcome for the patient. We showed previously that rats selectively bred for depression-like behaviors (SwLo rats) also have increased limbic seizure susceptibility compared with their depression-resistant counterparts (SwHi rats). In this study, we examined the therapeutic efficacy of voluntary exercise in our animal model of epilepsy and depression comorbidity.

View Article and Find Full Text PDF

Although physical activity reduces anxiety in humans, the neural basis for this response is unclear. Rodent models are essential to understand the mechanisms that underlie the benefits of exercise. However, it is controversial whether exercise exerts anxiolytic-like potential in rodents.

View Article and Find Full Text PDF

Although exercise improves anxiety in humans, it is controversial whether exercise is anxiolytic in rodents. We tested the hypothesis that stress influences the effect of exercise on anxiety-like and defensive behaviors. To explore the neurobiological mechanisms of exercise, we also examined whether exercise alters gene expression for the stress-related peptide galanin.

View Article and Find Full Text PDF

We evaluated levels of exercise-induced brain-derived neurotrophic factor (BDNF) messenger RNA (mRNA) within the hippocampal formation in rats selectively bred for 1) high intrinsic (i.e., untrained) aerobic capacity (High Capacity Runners, HCR), 2) low intrinsic aerobic capacity (Low Capacity Runners, LCR), and 3) unselected Sprague-Dawley (SD) rats with or without free access to running wheels for 3 weeks.

View Article and Find Full Text PDF

The present paper examines the nature and function of brain-derived neurotrophic factor (BDNF) in the hippocampal formation and the consequences of changes in its expression. The paper focuses on literature describing the role of BDNF in hippocampal development and neuroplasticity. BDNF expression is highly sensitive to developmental and environmental factors, and increased BDNF signaling enhances neurogenesis, neurite sprouting, electrophysiological activity, and other processes reflective of a general enhancement of hippocampal function.

View Article and Find Full Text PDF

The neuropeptide galanin extensively coexists with norepinephrine in locus coeruleus (LC) neurons. Previous research in this laboratory has demonstrated that unlimited access to activity wheels in the home cage increases mRNA for galanin (GAL) in the LC, and that GAL mediates some of the beneficial effects of exercise on brain function. To assess whether capacity for aerobic exercise modulates this upregulation in galanin mRNA, three heterogeneous rat models were tested: rats selectively bred for (1) high intrinsic (untrained) aerobic capacity (High Capacity Runners, HCR) and (2) low intrinsic aerobic capacity (Low Capacity Runners, LCR) and (3) unselected Sprague-Dawley (SD) rats with and without free access to running wheels for 3 weeks.

View Article and Find Full Text PDF

The antialcoholism medication disulfiram (Antabuse) inhibits aldehyde dehydrogenase (ALDH), which results in the accumulation of acetaldehyde upon ethanol ingestion and produces the aversive 'Antabuse reaction' that deters alcohol consumption. Disulfiram has also been shown to deter cocaine use, even in the absence of an interaction with alcohol, indicating the existence of an ALDH-independent therapeutic mechanism. We hypothesized that disulfiram's inhibition of dopamine β-hydroxylase (DBH), the catecholamine biosynthetic enzyme that converts dopamine (DA) to norepinephrine (NE) in noradrenergic neurons, underlies the drug's ability to treat cocaine dependence.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionhaqgofq60die94kerqdgnbvl78oglph4): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once