A variety of 2,6-modified purine 2'-C-methylribonucleosides and their phosphoramidate prodrugs were synthesized and evaluated for inhibition of HCV RNA replication in Huh-7 cells and for cytotoxicity in various cell lines. Cellular pharmacology and HCV polymerase incorporation studies on the most potent and selective compound are reported.
View Article and Find Full Text PDFHerein, we report the synthesis and structure-activity relationship studies of new analogs of boceprevir 1 and telaprevir 2. Introduction of azetidine and spiroazetidines as a P2 substituent that replaced the pyrrolidine moiety of 1 and 2 led to the discovery of a potent hepatitis C protease inhibitor 37c (EC50=0.8 μM).
View Article and Find Full Text PDFBased on the symmetrical bidentate structure of the NS5A inhibitor BMS-790052, a series of new monodentate molecules were designed. The synthesis of 36 new non-dimeric NS5A inhibitors is reported along with their ability to block HCV replication in an HCV 1b replicon system. Among them compound 5a showed picomolar range activity along with an excellent selectivity index (SI > 90,000).
View Article and Find Full Text PDFNucleosides Nucleotides Nucleic Acids
March 2006
A number of 1- or 6-substituted N9,5'-cyclo-3-(beta-ribofuranosyl)-8-azapurin-2-one derivatives were synthesized in multi-step reactions. Their anti-hepatitis C virus activities were evaluated and some structure-activity relationship is discussed.
View Article and Find Full Text PDFThe clinical emergence of lamivudine and adefovir resistance mutations on prolonged therapy further necessitates the development of additional drugs for the treatment of hepatitis B virus (HBV) infections. We have evaluated a number of novel 2'-fluoro-2',3'-unsaturated D- and L-nucleosides for their anti-HBV activity in the HepG2-2.2.
View Article and Find Full Text PDF