Delineating gene regulatory networks that orchestrate cell-type specification is a continuing challenge for developmental biologists. Single-cell analyses offer opportunities to address these challenges and accelerate discovery of rare cell lineage relationships and mechanisms underlying hierarchical lineage decisions. Here, we describe the molecular analysis of mouse pancreatic endocrine cell differentiation using single-cell transcriptomics, chromatin accessibility assays coupled to genetic labeling, and cytometry-based cell purification.
View Article and Find Full Text PDFThe islets of Langerhans are endocrine organs characteristically dispersed throughout the pancreas. During development, endocrine progenitors delaminate, migrate radially and cluster to form islets. Despite the distinctive distribution of islets, spatially localized signals that control islet morphogenesis have not been discovered.
View Article and Find Full Text PDFThe 2 most abundant human pancreatic islet cell types are insulin-producing β-cells and glucagon-producing α-cells. Defined cis-regulatory elements from rodent Insulin genes have permitted genetic labeling of human islet β-cells, enabling lineage tracing and generation of human β-cell lines, but analogous elements for genetically labeling human α-cells with high specificity do not yet exist. To identify genetic elements that specifically direct reporter expression to human α-cells, we investigated noncoding sequences adjacent to the human GLUCAGON and ARX genes, which are expressed in islet α-cells.
View Article and Find Full Text PDFDuring pancreas development, endocrine precursors and their progeny differentiate, migrate, and cluster to form nascent islets. The transcription factor Neurogenin 3 (Neurog3) is required for islet development in mice, but its role in these dynamic morphogenetic steps has been inferred from fixed tissues. Moreover, little is known about the molecular genetic functions of NEUROG3 in human islet development.
View Article and Find Full Text PDFThe regulatory logic underlying global transcriptional programs controlling development of visceral organs like the pancreas remains undiscovered. Here, we profiled gene expression in 12 purified populations of fetal and adult pancreatic epithelial cells representing crucial progenitor cell subsets, and their endocrine or exocrine progeny. Using probabilistic models to decode the general programs organizing gene expression, we identified co-expressed gene sets in cell subsets that revealed patterns and processes governing progenitor cell development, lineage specification, and endocrine cell maturation.
View Article and Find Full Text PDFFollowing fertilization of many animal embryos, rapid synchronous cleavage divisions give way to longer, asynchronous cell cycles at the midblastula transition (MBT). The cell cycle changes at the MBT, including the addition of gap phases and checkpoint controls, are accompanied by activation of the zygotic genome and the onset of cell motility. Whereas the biochemical changes accompanying the MBT in the vertebrate embryo have been extensively documented, the cellular events are not well understood.
View Article and Find Full Text PDF