Publications by authors named "Philip Sperling"

X-ray micro computed tomography (microCT) can be applied to analyse powder feedstock used in additive manufacturing. In this paper, we demonstrate a dedicated workflow for this analysis method, specifically for Ti6Al4V powder typically used in commercial powder bed fusion (PBF) additive manufacturing (AM) systems. The methodology presented includes sample size requirements, scan conditions and settings, reconstruction and image analysis procedures.

View Article and Find Full Text PDF

MicroCT is best known for its ability to detect and quantify porosity or defects, and to visualize its 3D distribution. However, it is also possible to obtain accurate volumetric measurements from parts - this can be used in combination with the part mass to provide a good measure of its average density. The advantage of this density-measurement method is the ability to combine the density measurement with visualization and other microCT analyses of the same sample.

View Article and Find Full Text PDF

The use of microCT of 10 mm coupon samples produced by AM has the potential to provide useful information of mean density and detailed porosity information of the interior of the samples. In addition, the same scan data can be used to provide surface roughness analysis of the as-built surfaces of the same coupon samples. This can be used to compare process parameters or new materials.

View Article and Find Full Text PDF

MicroCT is a well-established technique that is used to analyze the interior of objects non-destructively, and it is especially useful for void or porosity analysis. Besides its widespread use, few standards exist and none for additive manufacturing as yet. This is due to the inherent differences in part design, sizes and geometries, which results in different scan resolutions and qualities.

View Article and Find Full Text PDF