Publications by authors named "Philip Sexton"

Multiple abrupt warming events ("hyperthermals") punctuated the Early Eocene and were associated with deep-sea temperature increases of 2 to 4 °C, seafloor carbonate dissolution, and negative carbon isotope (δC) excursions. Whether hyperthermals were associated with changes in the global ocean overturning circulation is important for understanding their driving mechanisms and feedbacks and for gaining insight into the circulation's sensitivity to climatic warming. Here, we present high-resolution benthic foraminiferal stable isotope records (δC and δO) throughout the Early Eocene Climate Optimum (~53.

View Article and Find Full Text PDF

The global ocean's oxygen inventory is declining in response to global warming, but the future of the low-oxygen tropics is uncertain. We report new evidence for tropical oxygenation during the Paleocene-Eocene Thermal Maximum (PETM), a warming event that serves as a geologic analog to anthropogenic warming. Foraminifera-bound nitrogen isotopes indicate that the tropical North Pacific oxygen-deficient zone contracted during the PETM.

View Article and Find Full Text PDF

Quantitative reconstructions of hydrological change during ancient greenhouse warming events provide valuable insight into warmer-than-modern hydrological cycles but are limited by paleoclimate proxy uncertainties. We present sea surface temperature (SST) records and seawater oxygen isotope (δO) estimates for the Middle Eocene Climatic Optimum (MECO), using coupled carbonate clumped isotope (Δ) and oxygen isotope (δO) data of well-preserved planktonic foraminifera from the North Atlantic Newfoundland Drifts. These indicate a transient ~3°C warming across the MECO, with absolute temperatures generally in accordance with trace element (Mg/Ca)-based SSTs but lower than biomarker-based SSTs for the same interval.

View Article and Find Full Text PDF

The cause of the end-Cretaceous mass extinction is vigorously debated, owing to the occurrence of a very large bolide impact and flood basalt volcanism near the boundary. Disentangling their relative importance is complicated by uncertainty regarding kill mechanisms and the relative timing of volcanogenic outgassing, impact, and extinction. We used carbon cycle modeling and paleotemperature records to constrain the timing of volcanogenic outgassing.

View Article and Find Full Text PDF
Article Synopsis
  • The Mid-Pleistocene Transition (MPT) occurred between 1,200-800 thousand years ago, during which ice age cycles became longer and more asymmetric, shifting from approximately 40,000 to 100,000 years.
  • Researchers used boron isotope data to show that the difference in carbon dioxide levels between glacial and interglacial periods increased significantly during the MPT due to lower CO levels during glacial stages, largely influenced by increased iron fertilization in the Southern Ocean.
  • The findings suggest that changes in ice sheet dynamics were crucial in initiating the MPT, with subsequent carbon cycle feedbacks from dust fertilization helping to sustain longer and more intense ice ages afterward.
View Article and Find Full Text PDF

The Palaeocene-Eocene Thermal Maximum (PETM) was a global warming event that occurred about 56 million years ago, and is commonly thought to have been driven primarily by the destabilization of carbon from surface sedimentary reservoirs such as methane hydrates. However, it remains controversial whether such reservoirs were indeed the source of the carbon that drove the warming. Resolving this issue is key to understanding the proximal cause of the warming, and to quantifying the roles of triggers versus feedbacks.

View Article and Find Full Text PDF

'Hyperthermals' are intervals of rapid, pronounced global warming known from six episodes within the Palaeocene and Eocene epochs (∼65-34 million years (Myr) ago). The most extreme hyperthermal was the ∼170 thousand year (kyr) interval of 5-7 °C global warming during the Palaeocene-Eocene Thermal Maximum (PETM, 56 Myr ago). The PETM is widely attributed to massive release of greenhouse gases from buried sedimentary carbon reservoirs, and other, comparatively modest, hyperthermals have also been linked to the release of sedimentary carbon.

View Article and Find Full Text PDF

Major ice sheets were permanently established on Antarctica approximately 34 million years ago, close to the Eocene/Oligocene boundary, at the same time as a permanent deepening of the calcite compensation depth in the world's oceans. Until recently, it was thought that Northern Hemisphere glaciation began much later, between 11 and 5 million years ago. This view has been challenged, however, by records of ice rafting at high northern latitudes during the Eocene epoch and by estimates of global ice volume that exceed the storage capacity of Antarctica at the same time as a temporary deepening of the calcite compensation depth approximately 41.

View Article and Find Full Text PDF