Both single and repeated visual stimuli produce waves of activity in the visual cortex of freshwater turtles. Large-scale, biophysically realistic models of the visual cortex capture the basic features of the waves produced by single stimuli. However, these models do not respond to repetitive stimuli due to the presence of a long-lasting hyperpolarization that follows the initial wave.
View Article and Find Full Text PDFJ Integr Neurosci
December 2006
The visual cortex of turtles contains cells with at least two different receptive field properties. Superficial units are located immediately below the pial surface. They fire in response to moving bars located anywhere in binocular visual space and to two spots of light presented with different spatiotemporal separations.
View Article and Find Full Text PDFVisual stimuli produce waves of activity that propagate across the visual cortex of fresh water turtles. This study used a large-scale model of the cortex to examine the roles of specific types of cortical neurons in controlling the formation, speed and duration of these waves. The waves were divided into three components: initial depolarizations, primary propagating waves and secondary waves.
View Article and Find Full Text PDFTurtle visual cortex has three layers and receives direct input from the dorsolateral geniculate complex of the thalamus. The outer layer 1 contains several populations of interneurons, but their physiological properties have not been characterized. This study used intracellular recording methods followed by filling with Neurobiotin to characterize the morphology and physiology of two populations of layer 1 interneurons.
View Article and Find Full Text PDFThe goal of this paper is to verify that position and velocity of a spot of light incident on the retina of a turtle are encoded by the spatiotemporal dynamics of the cortical waves they generate. This conjecture is examined using a biophysically realistic large-scale computational model of the visual cortex implemented with the software package, GENESIS. The cortical waves are recorded and analyzed using principal components analysis and the position and velocity information from visual space is mapped onto an abstract B-space, to be described, using the coefficients of the principal components expansion.
View Article and Find Full Text PDFThe anterior dorsal ventricular ridge was examined in the American alligator, Alligator mississippiensis, with cresyl violet and Golgi-Kopsch preparations. Four cytoarchitectonic areas (lateral dorsolateral, medial dorsolateral, intermediolateral, and lateral) can be distinguished by variations in the density of neurons and their tendency to form clusters of neurons with apposed somata. Three distinct types of neurons are distributed throughout these areas.
View Article and Find Full Text PDFThe neural organization of the olfactory system in the desert iguana, Dipsosaurus dorsalis, has been investigated by using the Fink-Heimer technique to trace the efferents of the main and accessory olfactory bulbs, and Golgi preparations to determine the spatial relations between olfactory afferents and neurons in the primary olfactory centers. The accessory olfactory bulb projects to the ipsilateral nucleus sphericus via the accessory olfactory tract. The main olfactory bulb projects to the ipsilateral telen-cephalon via four tracts.
View Article and Find Full Text PDFLateral cortex is the most laterally placed of the four cortical areas in snakes. Earlier studies suggest that it is composed of several subdivisions but provide no information on their organization. This paper first investigates the structure of lateral cortex in boa constrictors (Constrictor constrictor), garter snakes (Thamnophis sirtalis), and banded water snakes (Natrix sipedon) using Nissl and Golgi preparations; and secondly examines the relation of main olfactory bulb projections to the subdivisions of lateral cortex using Fink-Heimer and electron microscopic preparations.
View Article and Find Full Text PDF