Publications by authors named "Philip S Sherman"

Three new radiolabeled compounds, [(11)C]SNC80 ((+)-4-[(αR)-α-{(2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl}-3-[(11)C]methoxybenzyl-N,N-diethylbenzamide), N,N-diethyl-4-[3-methoxyphenyl-1-[(11)C]methylpiperidin-4-ylidenemethyl)benzamide and N,N-diethyl-4-[(1-[(11)C]methylpiperidin-4-ylidene)phenylmethyl]benzamide, were prepared as potential in vivo radiotracers for the δ-opioid receptor. Each compound was synthesized by alkylation of the appropriate desmethyl compounds using [(11)C]methyl triflate. In vivo biodistribution studies in mice showed very low initial brain uptake of all three compounds and no regional specific binding for [(11)C]SNC80.

View Article and Find Full Text PDF

As potential new ligands targeting the binding site of gamma-aminobutyric acid (GABA) receptor ionophore, trans-5-tert-butyl-2-(4'-fluoropropynylphenyl)-2-methyl-1,1-dioxo-1,3-dithiane (1) and cis/trans-5-tert-butyl-2-(4'-fluoropropynylphenyl)-2-methyl-1,1,3,3-tetroxo-1,3-dithiane (2) were selected for radiolabeling and initial evaluation as in vivo imaging agents for positron emission tomography (PET). Both compounds exhibited identical high in vitro binding affinities (K(i)=6.5 nM).

View Article and Find Full Text PDF

The in vivo equilibrium specific binding of d-threo-[3H]methylphenidate, a radioligand for the dopamine transporter (DAT), and +-alpha-[3H]dihydrotetrabenazine, a radioligand for the vesicular monoamine transporter (VMAT2), were examined in rat brain with and without prior administration of 5 mg/kg scopolamine. Drug-treated animals exhibited a 30% increase in d-threo-[3H]methylphenidate binding to the DAT in the striatum relative to controls. No changes in specific binding of +-alpha-[3H]dihydrotetrabenazine were observed in any brain region following scopolamine pretreatment.

View Article and Find Full Text PDF

Administration of phenserine, an acetylcholinesterase inhibitor, raises endogenous brain acetylcholine levels and has been previously shown to reduce in vivo binding of the muscarinic cholinergic receptor antagonist [(11)C]N-methylpyrrolidinyl benzilate ([(11)C]NMPYB) in the awake rat brain. In this study, phenserine pretreatment was studied in both awake and isoflurane-anesthetized rats using the techniques of ex vivo dissection or in vivo microPET imaging. In ex vivo dissection experiments, a statistically significant 10% inhibition of [(11)C]NMPYB binding could be demonstrated in both awake and anesthetized animals after phenserine pretreatment, showing no deleterious effect of using isoflurane anesthesia.

View Article and Find Full Text PDF