Background: Obesity, particularly visceral adiposity, confers a worse prognosis for prostate cancer (PCa) patients, and increasing periprostatic adipose (PPA) tissue thickness or density is positively associated with more aggressive disease. However, the cellular mechanism of this activity remains unclear. Therefore, in this pilot study, we assessed the functional activity of PPA tissue secretions and established a biochemical profile of PPA as compared to subcutaneous adipose (SQA) tissues from lean, overweight and obese PCa patients.
View Article and Find Full Text PDFBackground: Adipokines in the tumor microenvironment may contribute to cancer growth. We hypothesized that peritumoral fat can be a source of lipid-derived energy for tumors by increasing adipose triglyceride lipase (ATGL)-mediated lipolysis and down-regulating a negative regulator of adipogenesis, pigment epithelium-derived factor (PEDF).
Methods: In a pilot study, tissue from mastectomies (n = 19) was collected from sites both adjacent (peritumoral) and distant to the tumor for comparison of ATGL, PEDF, and leptin expression levels using immunohistochemistry.
Forkhead transcription factor FOXO3 plays a critical role in suppressing tumor growth, in part, by increasing the cell cycle inhibitor p27kip1, and Foxo3 deficiency in mice results in marked colonic epithelial proliferation. Here, we show in Foxo3-deficient colonic epithelial cells a striking increase in intracytoplasmic lipid droplets (LDs), a dynamic organelle recently observed in human tumor tissue. Although the regulation and function of LDs in non-adipocytes is unclear, we hypothesize that the anti-proliferative effect of FOXO3 was dependent on lowering LD density, thus decreasing fuel energy in both normal and colon cancer cells.
View Article and Find Full Text PDFBackground And Aims: Pigment epithelium-derived factor (PEDF), a non-inhibitory SERPIN with potent antiangiogenic activity, has been recently implicated in metabolism and adipogenesis, both of which are known to influence pancreatic cancer progression. Increased pancreatic fat in human pancreatic tumour correlates with greater tumour dissemination while PEDF deficiency in mice promotes pancreatic hyperplasia and visceral obesity. Oncogenic Ras, the most common mutation in pancreatic ductal adenocarcinoma (PDAC), has similarly been shown to promote adipogenesis and premalignant lesions.
View Article and Find Full Text PDF