In an era marked by a growing demand for sustainable and high-performance materials, the convergence of additive manufacturing (AM), also known as 3D printing, and the thermal treatment, or pyrolysis, of polymers to form high surface area hierarchically structured carbon materials stands poised to catalyze transformative advancements across a spectrum of electrification and energy storage applications. Designing 3D printed polymers using low-cost resins specifically for conversion to high performance carbon structures via post-printing thermal treatments overcomes the challenges of 3D printing pure carbon directly due to the inability of pure carbon to be polymerized, melted, or sintered under ambient conditions. In this perspective, we outline the current state of AM methods that have been used in combination with pyrolysis to generate 3D carbon structures and highlight promising systems to explore further.
View Article and Find Full Text PDFA chemical foaming process of polylactic acid (PLA) was developed via the solid-state processing methods of solid-state shear pulverization (SSSP) and cryogenic milling. Based on the ability of solid-state processing to enhance the crystallization kinetics of PLA, chemical foaming agents (CFA) are first compounded before foaming via compression molding. Specifically, the effects of the pre-foaming solid-state processing method and CFA concentration were investigated.
View Article and Find Full Text PDF