Publications by authors named "Philip Penn"

Purpose: Lenses from young and old mice were analyzed by laser scanning confocal microscopy (LSCM) with vital dyes, to determine whether age-related subcapsular and cortical cataracts were linked to the failure of lens fiber cells to degrade nuclei, DNA, and mitochondria properly and whether they result in the overproduction of reactive oxygen species (ROS) at the same sites.

Results: As opposed to the clear DNA-free subcapsular and cortical areas of young adult mouse lenses, these areas in cataractous old mouse lenses were found to contain accumulations of nuclei, nuclear fragments, aggregated mitochondria, and amorphous DNA as cortical inclusions (P < 0.001 between young and old lenses).

View Article and Find Full Text PDF

Five mouse models with known alterations of resistance to oxidative damage were compared by slit lamp examination for the presence and degree of advancement of age-related cataract in young adult and old animals along with wild type controls. A group of young and old normal C57BL/6Jax mice were examined first to constitute a standard, and they were found to exhibit age-related cataract development. Following this, four models on the C57BL/6 background with imposed genetic alterations affecting anti-oxidant enzyme presence or activity, and one outbred model in which a deletion blocked the growth hormone/IGF-1 axis, were similarly examined.

View Article and Find Full Text PDF

Bone marrow stroma fibroblastoid cells (BMSFC) develop from a single clone of cells within each of the in vitro fibroblastoid colonies (CFU-F) derived from either murine or human bone marrow. All of the clones represented by these colonies displayed antigenic and product markers for osteoblast, smooth muscle, and adipocyte lineages when tested separately for each marker. Separate sets of fibroblastoid colonies derived from the same individual donor's culture tested positive with antibodies specific for smooth muscle-specific heavy chain myosin (SMMHC), smooth muscle alpha actin-1, bone sialoprotein, osteocalcin, or alkaline phosphatase, and developed von Kossa-positive deposits shown by X-ray microanalysis and electron diffraction to be hydroxyapatite.

View Article and Find Full Text PDF